Answer:
Explained
Explanation:
Resistance R in a current flow through an object is given by

ρ = resistivity of the material
L= length of the object
A= area of cross section
clearly resistance is directly dependent on length of the object.This means greater the length larger will be resistance to current.
thermal resistance R_th is given by

L= length of the object
A= area of cross section
K = Conductivity of the material
thermal resistance is also is directly dependent on length of the object.This means greater the length larger will be resistance to current.
I guess 48 , but I’m not sure
Answer:
Newton's first law states that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
Newton's second law states that the acceleration of an object is directly related to the net force and inversely related to its mass. Acceleration of an object depends on two things, force and mass.
Newton's third law states that if an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A. This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.
Explanation:
John weighs 200 pounds.
In order to lift himself up to a higher place, he has to exert force of 200 lbs.
The stairs to the balcony are 20-ft high.
In order to lift himself to the balcony, John has to do
(20 ft) x (200 pounds) = 4,000 foot-pounds of work.
If he does it in 6.2 seconds, his RATE of doing work is
(4,000 foot-pounds) / (6.2 seconds) = 645.2 foot-pounds per second.
The rate of doing work is called "power".
(If we were working in the metric system (with SI units),
the force would be in "newtons", the distance would be in "meters",
1 newton-meter of work would be 1 "joule" of work, and
1 joule of work per second would be 1 "watt".
Too bad we're not working with metric units.)
So back to our problem.
John has to do 4,000 foot-pounds of work to lift himself up to the balcony,
and he's able to do it at the rate of 645.2 foot-pounds per second.
Well, 550 foot-pounds per second is called 1 "horsepower".
So as John runs up the steps to the balcony, he's doing the work
at the rate of
(645.2 foot-pounds/second) / (550 ft-lbs/sec per HP)
= 1.173 Horsepower. GO JOHN !
(I'll betcha he needs a shower after he does THAT 3 times.)
_______________________________________________
Oh my gosh ! Look at #26 ! There are the metric units I was talking about.
Do you need #26 ?
I'll give you the answers, but I won't go through the explanation,
because I'm doing all this for only 5 points.
a). 5
b). 750 Joules
c). 800 Joules
d). 93.75%
You're welcome.
And #27 is 0.667 m/s .
Answer:
35m/s[57o].
X = 35*Cos57 =
Y = 35*sin7 =Explanation:
learn man but there u go