Answer: There is two (PO4) in the formula
Explanation:
Just be aware of the difference between numbers to the right and left: 5Mg3 means there are a total of 5 Mg (if 3 is a number in the bottom left) the 3 in (PO4) means there are 3 PO4 but because of the 2 it could mean there are 6.
Depends if the elements are separated
The axial field is the integration of the field from each element of charge around the ring. Because of symmetry, the field is only in the direction of the axis. The field from an element ds in the ring is
<span>dE = (qs*ds)cos(T)/(4*pi*e0)*(x^2 + R^2) </span>
<span>where x is the distance along the axis from the plane of the ring, R is the radius of the ring, qs is the linear charge density, T is the angle of the field from the x-axis. </span>
<span>However, cos(T) = x/sqrt(x^2 + R^2) </span>
<span>so the equation becomes </span>
<span>dE = (qs*ds)*[x/sqrt(x^2 + R^2)]/(4*pi*e0)*(x^2 + R^2) </span>
<span>dE =[qs*ds/(4*pi*e0)]*x/(x^2 + R^2)^1.5 </span>
<span>Integrating around the ring you get </span>
<span>E = (2*pi*R/4*pi*e0)*x/(x^2 + R^2)^1.5 </span>
<span>E = (R/2*e0)*x*(x^2 + R^2)^-1.5 </span>
<span>we differentiate wrt x, the term R/2*e0 is a constant K, and the derivative is </span>
<span>dE/dx = K*{(x^2 + R^2)^-1.5 +x*[(-1.5)*(x^2 + R^2)^-2.5]*2x} </span>
<span>dE/dx = K*{(x^2 + R^2)^-1.5 - 3*x^2*(x^2 + R^2)^-2.5} </span>
<span>to find the maxima set this = 0, giving </span>
<span>(x^2 + R^2)^-1.5 - 3*x^2*(x^2 + R^2)^-2.5 = 0 </span>
<span>mult both side by (x^2 + R^2)^2.5 to get </span>
<span>(x^2 + R^2) - 3*x^2 = 0 </span>
<span>-2*x^2 + R^2 = 0 </span>
<span>-2*x^2 = -R^2 </span>
<span>x = (+/-)R/sqrt(2) </span>
The right<span> at +20.0 </span>cm/s makes<span> an </span>elastic head<span>-on </span>collision<span> with a 10.0 </span>g object<span> that </span>makes<span> an</span>elastic head<span>-on </span>collision<span> with a 10.0 </span>g object<span> that is </span>initially<span> at </span>rest<span>.(b) Find the fraction of the </span>initial<span>kinetic energy transferred to the 10.0 </span>g object<span>.of small </span>mass<span> before and </span>after collision; V=velocity<span> of big </span>mass after collision<span>.</span>
Answer:
12mph in 2hrs and 3mph in 0.5hrs the total distance would be 12*2 and 3*0.5 which would be 24 and 1.5 so we add those 24+1.5= 25.5. The answer would be 25.5
A toaster draws electric current ( electrical energy) from a wall outlet and converts these moving electric charges into heat (thermal energy) in the filaments that turn red hot to cook your toast. I hope that helps you