The stronger the pull of gravity the greater the mass
Answer:
410.196 J/[kg*°C].
Explanation:
1) the equation of the energy is: E=c*m*(t₂-t₁), where E - energy (523 J), c - unknown specific heat of copper, m - mass of this copper [kg], t₂ - the final temperature, t₁ - initial temerature;
2) the specific heat of copper is:
![c=\frac{E}{m*(t_2-t_1)}; \ => \ c=\frac{523}{0.085*(45-30)}=\frac{523}{1.275}=410.196[\frac{J}{kg*C}].](https://tex.z-dn.net/?f=c%3D%5Cfrac%7BE%7D%7Bm%2A%28t_2-t_1%29%7D%3B%20%5C%20%3D%3E%20%5C%20c%3D%5Cfrac%7B523%7D%7B0.085%2A%2845-30%29%7D%3D%5Cfrac%7B523%7D%7B1.275%7D%3D410.196%5B%5Cfrac%7BJ%7D%7Bkg%2AC%7D%5D.)
Atoms are the smallest form of the substance. examples of atoms are in elemental forms such as copper, helium, silver. Diatomic molecules are made up of identical atoms. Examples are I2.. F2 and Br2. Formula units are those compounds that are made up of two or more elements such as -No2, KMnO4,<span>C3H8, MgCl2, HgBr2, Ba(OH)2</span>
Answer:
1L of hot water just below the Boling point
Explanation:
asking questions is best to learn please ask more questions
Answer:
Since valence shells are mostly empty in nonmetal atoms, the atoms attract and hold any electrons they can in order to fill their valence shells.