The isotopes contribute to the average atomic mass based on their abundance. The result is that the "average" mass for the atoms of an element is dictated by the most abundant or common isotope. The average atomic mass for carbon is 12.0107 amu.
The atomic mass as displayed on the periodic table is a weighted average relative atomic mass of the naturally occuring isotopes of that element.
An isotope is an element with the same number of protons but a different number of neutrons
For example - Carbon naturally occurs in isotopes C12, C13 and C14 with abundances of 98.9% 1.1% and 'trace' respectively.
the average mass is then calculated by 12*98.9%+13*1.1% = 12.01g/mol
Answer:
450N
Explanation:
Given data
Mass m= 75kg
Acceleration= 6m/s^2
From the Newtons first law, F=ma
substitute
F=75*6
F= 450N
Hence the force is 450N
Answer:
The number of free electrons per cubic meter is 
Explanation:
It is given that,
The number of free electrons per cubic meter is, 1.3
Electrical conductivity of metal, 
Density of metal, 
Atomic weight, A = 107.87 g/mol
Let n is the number of free electrons per cubic meter such that,


Where
is the density of silver atom
is the Avogadro number
A is the atomic weight of silver


or

Hence, this is the required solution.
Answer:
32.1
Explanation:
NOTE: You did not state the angle of incidence, and thus, I will be using 45° as my angle of incidence, all you need to do is replace it with your own value if it's different.
To solve this question, we are going to be using Snell's Law.
Snell's law describes the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
Snell's law is mathematically given as
sin(A1)/sin(A2) = n2/n1, where
n1 = incidence index
n2 = refracted index
A1 = incidence angle
A2 = refracted angle
The refraction index of oil is 1.15, and that of water is 1.33, so
if we take oil first,
sin A2 = (n1.sinA1)/n2
sin A2 = (1 * sin 45)/1.15
sin A2 = 0.7071/1.15
sin A2 = 0.6149
A2 = sin^-1 0.6149
A2 = 37.9°
Then
sin A3 = (1.15 * sin 37.9) / 1.33
sin A3 = (0.6149 * 1.15) / 1.33
sin A3 = 0.7071 / 1.33
sin A3 = 0.5317
A3 = sin^-1 0.5317
A3 = 32.1
<h2> Charge = 25.9

</h2>
Explanation:
Given,
The average current (I) =
and
Time period (T) = 0.133 s
The charge is calculated by multiplying the current to the time period.
Hence,
To find, the charge delivered to the ground by the lightning bolt(Q) = ?
By applying the formula of charge that is-
Charge(Q) = 
∴ Charge(Q) = 

= 25.89111 
= 25.9 
<h3>Thus, the charge of 25.9

is delivered to the ground by the lightning bolt.</h3>