Answer:
c.
Explanation:
We are given that
Acceleration due to gravity on the moon=
Acceleration due to gravity on the earth=

Net force due to am on an object on moon=
There is no friction and no drag force and there is no gravity involved
Then, the force acting on an object on earth=
(given)


Hence, option c is true.
When talking about orbits, it would have to be a mixture of both A. and B. since Newton's first law, gravity plays a huge part in an orbit. However, the universal gravitation law also tells us the relationship between two massive objects in orbit. But to choose only one, it would have to be B. Newton's first law
No, gravity acts equally on all objects. The crumpled paper falls faster because it resists the drag force due to the atmosphere because of its compact size. A flat piece of paper has an extended body and "catches" the air and falls more slowly. In a vacuum they would fall at the same rate either way.
Answer:
a= 0.22 m/s²
Explanation:
Given that
M = 3.5 kg
θ = 30°
m = 1 kg
μ= 0.3
The force due to gravity
F₁= M g sinθ
F₁=3.5 x 10 x sin 30
F₁= 17.5 N
F₂ = m g
F₂ = 1 x 10 = 10 N
The maximum value of the friction force on the incline plane
Fr = μ M g cosθ
Fr = 0.3 x 2.5 x 10 cos30°
Fr= 6.49 N
Lets take acceleration of the system is a m/s²
F₁ - F₂ - Fr = (M+m) a
17.5 - 10 - 6.49 = (3.5+1)a
a= 0.22 m/s²