Answer:
Hope you like it
Explanation:
Microscopes make small things appear larger. C: Hans and Zacharias Janssen created the first microscope. and D: A lens is a transparent material that helps show the details of things observed.
Bohr's equation for the change in energy is

where
h = Planck's constant
c == the velocity of light
λ = wavelength.
The velocity is related to wavelength and frequency, f, by
c = fλ
Let us examine the given answers on the basis of the given equations.
a. As λ increases, f decreases and ΔE decreases.
TRUE
b. As λ increases, f increases and ΔE increases.
FALSE
c. As λ increases, f increases and ΔE decreases.
FALSE
Answer:
As the wavelength increases, the frequency decreases and energy decreases.
Answer:
(i) The wavelength is 0.985 m
(ii) The frequency of the wave is 36.84 Hz
Explanation:
Given;
mass of the string, m = 0.0133 kg
tensional force on the string, T = 8.89 N
length of the string, L = 1.97 m
Velocity of the wave is:

(i) The wavelength:
Fourth harmonic of a string with two nodes, the wavelength is given as,
L = 2λ
λ = L/2
λ = 1.97 / 2
λ = 0.985 m
(ii) Frequency of the wave is:
v = fλ
f = v / λ
f = 36.29 / 0.985
f = 36.84 Hz