This is not a phospholipid as it does not contain a phosphate group at the end of the chain, and is not a triglyceride as there is no glyceryl moiety. Each carbon bonded to hydrogens makes the maximum number of C-H bonds possible, therefore there are no multiple bonds between carbons and the lipid is saturated. Therefore the answer is A.
Hope this helps!
the answer is actually 118 look it up
The molarity of a solution in which 55. 49 g of calcium chloride is dissolved in enough water to make 500. ml of solution is 1M.
<h3>What is molarity? </h3>
It is defined as number of moles of solute divided by volume of solution.
Given,
Mass of CaCl2 =55.49g
Molar mass of CaCl2 =40+35+35=110g
Mole= given mass/ molar mass
= 55.49/110=0.50mol.
Now, putting all values we get the molarity
Molarity =0.5×1000/500=1M
Thus, the molarity of given solution is 1M.
learn more about Molarity:
brainly.com/question/26921570
#SPJ4
Answer:
Sodium is a silvery-white metal that reacts with chlorine gas, which is a yellow-greenish gas that is toxic. The reaction gives off a lot of heat. After the reaction, which statement is true about the chemical properties of the product, sodium chloride?
Pure sodium reacts violently and sometimes explosively with water producing sodium hydroxide, hydrogen gas and heat
2Na(s) + 2H2O(l) → 2NaOH(aq) + H2(g)
Chlorine is a very poisonous yellow green gas with a sharp odour that was used in gas warfare during WW1
Sodium and chlorine reacts with each other, however, to produce one of the most familiar substance used in cooking and preservation industry today Sodium Chloride or Common salt or table salt in the irreversible equation;
2Na(s) + Cl2(g) → 2NaCl(s)
Explanation:
It is easy to see why this reaction takes place so readily sodium has one electron in its outermost valence shell while chlorine has seven electrons in its valence shell. when sodium atom transfers one electron to chlorine atom forming a sodium cation (Na+) and a chloride anion (Cl-) both ions have complete valence shells and are energetically more stable. the reaction is extremely exothermic, producing a bright yellow light and a great deal of heat and fumes of sodium chloride.
In a reaction observation of the reaction process you will see sodium flares up almost immediately upon reaction with water.