The statement (C) <span>The current carrying loop is able to turn because the magnetic force is always parallel to it.
In an electric motor the current do not reduce at any point. So, the (A) is also not correct.
The correct statement about an electric motor is (B),
</span><span>The current carrying loop is able to turn because the magnetic force is always at a right angle to it.</span>
Answer:
Zero
Explanation:
Average velocity is given by:

where
d is the displacement of the trip
t is the time it takes for the trip to complete
In this problem, the net displacement of the swimmer is zero. In fact:
- First, he swims 30.0 m in the north direction
- Then, he travels back (-30.0 m) in the south direction, to the starting position
Since the final position is equal to the starting position, the displacement is zero:
d = 0
And therefore, the average velocity is also zero.
Coronal Mass ejections or Solar ejections are activities on the surface of the sun termed to the reaction of the gas composition of the sun's surface attributing to explosion of these gases. One example most commonly known as Solar Flares, and another example is termed as erupting prominence.
3.0 A i got it off Quizlet and there usually always right lol can't submit tho my answers to short.... Dot dot dot
<u>Answer:</u> The voltage needed is 35.7 V
<u>Explanation:</u>
Assuming that the resistors are arranged in parallel combination.
For the resistors arranged in parallel combination:

We are given:

Using above equation, we get:

Calculating the voltage by using Ohm's law:
.....(1)
where,
V = voltage applied
I = Current = 3.75 A
R = Resistance = 
Putting values in equation 1, we get:

Hence, the voltage needed is 35.7 V