The total mechanical energy is the sum of the kinetic energy and the gravitational potential energy:

where m=3.5 kg is Candy's mass, v=1 m/s is her velocity and h=3.5 m is her height. If we replace these numbers, we find the mechanical energy of the system:
Answer:
The kinetic energy of the phone would increase. The gravitational potential energy of the phone would decrease.
Explanation:
The kinetic energy
of an object is proportional to the square of the speed of that object. If air resistance is negligible, the phone would accelerate under gravitational pull and speed up. Hence, the kinetic energy of the phone would increase.
The gravitational field near the surface of the earth is approximately constant. Hence, the gravitational potential energy
of the phone would be proportional to its height. As the phone approaches the ground, the height of the phone becomes lower and the gravitational potential energy of the phone would decrease.
Answer:
distance between school and home is 21 miles
Explanation:
given data
in rush hour speed s1 = 28 mph
less traffic speed s2 = 42 mph
time t = 1 hr 15 min = 1.25 hr
to find out
distance d
solution
we consider here distance home to school is d and t1 time to reach at school
we get here distance equation when we go home to school that is
distance = 28 × t1 .......................1
and when we go school to home distance will be
distance = 42 × ( t - t1 )
distance = 42 × ( 1.25 - t1 ) ...................2
so from equation 1 and 2
28 × t1 = 42 × ( 1.25 - t1 )
t1 = 0.75
so
from equation 1
distance = 28 × t1
distance = 28 × 0.75
distance = 21 miles
It's an electric motor that converts electric energy into Mechanical energy
Answer:
h = 9.83 cm
Explanation:
Let's analyze this interesting exercise a bit, let's start by comparing the density of the ball with that of water
let's reduce the magnitudes to the SI system
r = 10 cm = 0.10 m
m = 10 g = 0.010 kg
A = 100 cm² = 0.01 m²
the definition of density is
ρ = m / V
the volume of a sphere
V =
V =
π 0.1³
V = 4.189 10⁻³ m³
let's calculate the density of the ball
ρ =
ρ = 2.387 kg / m³
the tabulated density of water is
ρ_water = 997 kg / m³
we can see that the density of the body is less than the density of water. Consequently the body floats in the water, therefore the water level that rises corresponds to the submerged part of the body. Let's write the equilibrium equation
B - W = 0
B = W
where B is the thrust that is given by Archimedes' principle
ρ_liquid g V_submerged = m g
V_submerged = m / ρ_liquid
we calculate
V _submerged = 0.10 9.8 / 997
V_submerged = 9.83 10⁻⁴ m³
The volume increassed of the water container
V = A h
h = V / A
let's calculate
h = 9.83 10⁻⁴ / 0.01
h = 0.0983 m
this is equal to h = 9.83 cm