Answer:
A
Explanation:
the metal lunchbox has a higher conductivity
<h2 />
The total resistance of a series circuit is equal to the sum of individual resistances. Voltage applied to a series circuit is equal to the sum of the individual voltage drops. The voltage drop across a resistor in a series circuit is directly proportional to the size of the resistor.
If you know the total current and the voltage across the whole circuit, you can find the total resistance using Ohm's Law: R = V / I. For example, a parallel circuit has a voltage of 9 volts and total current of 3 amps. The total resistance RT = 9 volts / 3 amps = 3 Ω
Current: The total circuit current is equal to the sum of the individual branch currents. Resistance: Individual resistances diminish to equal a smaller total resistance rather than add to make the total.
Answer:
0.5 Hz
Hope you find this helpful. Please mark me as brainliest!
Answer:
An Atom's individual speed will change as it collides with other atoms, so we have to use an average.
Explanation:
In a gas a single atoms does an assortment of things during its time in the gas—sometimes it collides with an other atom gaining a lot of speed, sometimes losing a lot of speed in the collision, and sometimes just moving freely. Therefore: the motion of one individual atom is unpredictable, and it cannot be representative of all the the atoms in a gas, which is why we must average over all speeds of all atoms to find an average speed that allows us to calculate other quantities like temperature and pressure of the gas.
Hence, the second option <em>"an Atom's individual speed will change as it collides with other atoms, so we have to use an average" </em>stands correct.
Answer:
This experiment lets you repeat Galileo's experiment in a vacuum. The free fall of a coin and feather are compared, first in a tube full of air and then in a vacuum. With air resistance, the feathers fall more slowly. In a vacuum, the objects fall at the same rate independent of their respective masses.