Answer:
a) 2nd case rate of rotation gives the greater speed for the ball
b) 1534.98 m/s^2
c) 1515.04 m/s^2
Explanation:
(a) v = ωR
when R = 0.60, ω = 8.05×2π
v = 0.60×8.05×2π = 30.34 m/s
Now in 2nd case
when R = 0.90, ω = 6.53×2π
v = 0.90×6.53×2π = 36.92 m/s
6.35 rev/s gives greater speed for the ball.
(b) a = ω^2 R = (8.05×2π)^2 )(0.60) = 1534.98 m/s^2
(c) a = ω^2 R = (6.53×2π)^2 )(0.90) = 1515.05 m/s^2
m = 43.2 kg
Explanation:
volume of sphere = (4/3)pi(r)^3
= (4/3)(3.14)(2 m)^3
= 33.5 m^3
density = mass/volume
or solving for mass m,
m = (density)×(volume)
= (1.29 kg/m^3)(33.5 m^3)
= 43.2 kg
Answer:
4.245s
Explanation:
Given that,
Hypothetical value of speed of light in a vacuum is 18 m/s
Speed of the car, 14 m/s
Time given is 6.76 s, and we're asked to find the observed time, T
The relationship between the two times can be given as
T = t / √[1 - (v²/c²)]
The missing variable were looking for is t, and we can find it if we rearrange the formula and make t the subject
t = T / √[1 - (v²/c²)]
And now, we substitute the values and insert into the equation
t = 6.76 * √[1 - (14²/18²)]
t = 6.76 * √[1 - (196/324)]
t = 6.76 * √(1 - 0.605)
t = 6.76 * √0.395
t = 6.76 * 0.628
t = 4.245 s
Therefore, the time the driver measures for the trip is 4.245s
Answer:
If the frequency of the motion of a simple harmonic oscillator is doubled , then maximum speed of the oscillator changes by the factor 2
Explanation:
We know that in a simple harmonic oscillator the maximum speed is given by
= 
Here A is amplitude which is constant , so from above equation we see that maximum speed is directly proportional to
of the oscillation .
Since 
= 2
Where
is the maximum speed when frequency is doubled .