Okay so because of the difference in density a simple method for telling the difference between the two is to put a sample in a container with oil, because water has a higher density than the oil it would sink to the bottom but alcohol on the other hand is lighter than oil and would float on top of the oil.
However with this question I think that what you would do is use the ice to find out what the substance is, it would float on top of the liquid if it were water because the water is denser than ice but the ice would sink if it was alcohol because the alcohol is less dense than ice.
I hope this helps you, good luck : )
A second-order extension of the Kohn-Sham total energy in density-functional theory (DFT) with respect to charge density fluctuations serves as the foundation for the density functional based tight binding (DFTB) approach.
What is DFTB method?
- The density functional based tight binding (DFTB) electronic structure method was used to study the clusters of bare TiO2 and TiO2 with linked organic ligands modeling polyorganic composites used as photocatalytic materials.
- The results were compared to those obtained from B3LYP/6-31G(d,p) calculations, semiempirical methods PM6 and PM7, and available experimental data.
- It was discovered that the highly scalable DFTB approach produces outcomes that are nearly on the level of theory B3LYP/6-31G(d,p).
- The trans3d set more accurately reproduces the energies of the composite material production in polycondensation processes, but the corrected version of the tiorg DFTB parameter set (tiorg-smooth) performs better for structural parameter estimations.
- The tiorg-smooth and trans3d settings perform better than the matsci set in some way. Studies of adsorption complexes of bare TiO2 clusters can be conducted using the tiorg-smooth and matsci sets.
Learn more about the Density with the help of the given link:
brainly.com/question/23487480
#SPJ4
Answer:
23.8
Explanation:
Formula
weight % = weight of solute/ weight of solution x 100
weight of solution = weight of salt + weight of water
weight of solution = 1.62 lb + 5.20 lb = 6.82 lb
weight % = 1.62 / 6,82 x 100
weight % = 0.238 x 100
weight % = 23.8
<u>Answer:</u> The final volume of the reaction is 4.69 L
<u>Explanation:</u>
The relationship of number of moles and volume at constant temperature and pressure was given by Avogadro's law. This law states that volume is directly proportional to number of moles at constant temperature and pressure.
The equation used to calculate number of moles is given by:
where,
are the initial volume and number of moles
are the final volume and number of moles
We are given:
Putting values in above equation, we get:
Hence, the final volume of the reaction is 4.69 L