the answer in my opinion would be A
Answer:
The particle’s velocity is -16.9 m/s.
Explanation:
Given that,
Initial velocity of particle in negative x direction= 4.91 m/s
Time = 12.9 s
Final velocity of particle in positive x direction= 7.12 m/s
Before 12.4 sec,
Velocity of particle in negative x direction= 5.32 m/s
We need to calculate the acceleration
Using equation of motion


Where, v = final velocity
u = initial velocity
t = time
Put the value into the equation


We need to calculate the initial speed of the particle
Using equation of motion again


Put the value into the formula


Hence, The particle’s velocity is -16.9 m/s.
The current in the 50 Ω resistor is A) 1.2 A
Answer:
Zero
Explanation:
here, the inductive reactance and the capacitive reactance is same, so this is the condition for resonance.
In the condition for resonance,
the circuit and the voltage in the circuit is in the same phase and the impedance of the circuit is minimum which is equal to the resistance of the circuit.
The phase angle is given by

Ф = 0
Answer:
stars will emit more light due to their Luminosity, so they look very bright.
Explanation:
Luminous refers to..,
- The total amount of energy radiated by a star or other celestial object per second.
- Therefore it is the power output of a star.
Most of the really bright stars in our sky are not that very close to us yet they look bright because of the Luminosity of the star.
These stars are intrinsically so luminous.
A star's power output across all wavelengths is called its bolometric luminosity.
A star with large luminosity will have more measure of radiated electromagnetic power meaning.
so it will emit more light than a low luminosity star.
Hence,
those stars can easily be seen even across great distance.
learn more about Luminosity of the star here:
<u>brainly.com/question/13912549</u>
<u />
#SPJ4