The correct answer is:
2 atoms and 2 lone pairs; 2 atoms and 1 lone pair.
Both AX₂E₂ and AX₂E have different electron domain geometry; AX₂E₂ is tetrahedral and AX₂E is trigonal planar but both of them has the same molecular geometry
Bent
The chemical equation representing the first ionization energy for lithium is given by;
Li → Li + e-
<h2>Further Explanation; </h2><h3>Ionization energy</h3>
- Ionization energy is the energy required to remove outermost electrons from the outermost energy level. Energy is required to remove an electron from an atom.
- The closer an electron is to the nucleus the more energy is required, since the electron is more tightly bound to the atom thus making it more difficult to remove, hence higher ionization energy.
- Ionization energy increases across the periods and decreases down the group from top to bottom.
- Additionally, the ionization energy increases with subsequent removal of a second or a third electron.
<h3>First ionization energy </h3>
- This is the energy required to remove the first electron from the outermost energy level of an atom.
- Energy needed to remove the second electron to form a divalent cation is called the second ionization energy.
<h3>Trends in ionization energy </h3><h3>1. Down the group(top to bottom)</h3>
- Ionization energy decreases down the groups in the periodic table from top to bottom.
- It is because as you move down the group the number of energy levels increases making the outermost electrons get further from the nucleus reducing the strength of attraction to the nucleus.
- This means less energy will be required compared to an atoms of elements at the top of the groups.
<h3>2. Across the period (left to right)</h3>
- Ionization energy increases across the period from left to right.
- This can be explained by an increase in nuclear energy as extra protons are added to the nucleus across the period increasing the strength of attraction of electrons to the nucleus.
- Consequently, more energy is needed to remove electrons from the nucleus.
Keywords: Ionization energy, periodic table, energy levels, electrons
<h3>Learn more about</h3>
Level: High school
Subject: Chemistry
Topic: Periodic table and chemical families
Sub-topic: Ionization energy
<h3>Answer:</h3><h2>Chemical properties</h2><h3>Explanation:</h3>
By its very definition, a chemical property is one which is exhibited as a result of a chemical reaction. This may happen during or after the reaction. This is because in a chemical reaction there is a transformation in the physical composition of the components and this directly affects its chemical properties.
Answer:
Option C. Energy Profile D
Explanation:
Data obtained from the question include:
Enthalpy change ΔH = 89.4 KJ/mol.
Enthalpy change (ΔH) is simply defined as the difference between the heat of product (Hp) and the heat of reactant (Hr). Mathematically, it is expressed as:
Enthalpy change (ΔH) = Heat of product (Hp) – Heat of reactant (Hr)
ΔH = Hp – Hr
Note: If the enthalpy change (ΔH) is positive, it means that the product has a higher heat content than the reactant.
If the enthalpy change (ΔH) is negative, it means that the reactant has a higher heat content than the product.
Now, considering the question given, the enthalpy change (ΔH) is 89.4 KJ/mol and it is a positive number indicating that the heat content of the product is higher than the heat content of the reactant.
Therefore, Energy Profile D satisfy the enthalpy change (ΔH) for the formation of CS2 as it indicates that the heat content of product is higher than the heat content of the reactant.