Most of the time, fossils are only partially uncovered on site. They are removed individually or in blocks and often protected by plaster jackets before being taken back ...
<h3>
Answer:</h3>

<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2Al₂O₃ → 4Al + 3O₂
[Given] 20 mol Al₂O₃
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol Al₂O₃ → 4 mol Al
<u>Step 3: Stoich</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4:Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
Since our final answer already has 1 sig fig, there is no need to round.
The angle- angle similarity postulate. It states that if a triangle has two equal corresponding angles the angles are similar.
We are given
0.2 M HCHO2 which is formic acid, a weak acid
and
0.15 M NaCHO2 which is a salt which can be formed by reacting HCHO2 and NaOH
The mixture of the two results to a basic buffer solution
To get the pH of a base buffer, we use the formula
pH = 14 - pOH = 14 - (pKa - log [salt]/[base])
We need the pKa of HCO2
From, literature, pKa = 1.77 x 10^-4
Substituting into the equation
pH = 14 - (1.77 x 10^-4 - log 0.15/0.2)
pH = 13.87
So, the pH of the buffer solution is 13.87
A pH of greater than 7 indicates that the solution is basic and a pH close to 14 indicates high alkalinity. This is due to the buffering effect of the salt on the base.