when approaching the front of an idling jet engine, the hazard area extends forward of the engine approximately 25 feet.
<h3>What impact, if any, would jet fuel and aviation gasoline have on a turbine engine?</h3>
Tetraethyl lead, which is present in gasoline, deposits itself on the turbine blades. Because jet fuel has a higher viscosity than aviation gasoline, it may retain impurities with greater ease.
Once the gasoline charge has been cleared, start the engine manually or with an electric starter while cutting the ignition and using the maximum throttle.
On the final approach, the aeroplane needs to be re-trimmed to account for the altered aerodynamic forces. A substantial nose-down tendency results from the airflow producing less lift on the wings and less downward force on the horizontal stabiliser due to the reduced power and slower velocity.
Learn more about turbine engine refer
brainly.com/question/807662
#SPJ4
Answer:
Energy is transformed from potential to kinetic and vice versa
Explanation:
The energy is transformed from mechanical to kinetic energy when the object changes its position with respect to a reference point, where it loses height but increases its speed. When the object is at maximum height with respect to a reference point, it will have its maximum potential energy value. When the object passes through the reference point it will have potential energy equal to zero, but this energy will become kinetic energy.
The most characteristic and real example is that of a pendulum at one end, as can be seen in the attached image.
When the pendulum is located at the top end, as shown in Figure 1, at that point the maximum potential energy will be held. Then the pendulum is released and when it passes through the reference point and its height is zero, with respect to that point, all potential energy will have become kinetic energy in the same way at this point the maximum speed of the pendulum will be set.
The particular temperature at which vaporisation occurs is known as the boiling point of liquid. Volume of water increases when it boils at 100° C. 1 cm3 of water at 100 ° C becomes 1760 cm3 of steam at 100 ° C.
Hope it helps!!!!!!!!!!!!!!!!!!!!! ~~~~~~~~~~~~~~~~~~~
ಥ‿ಥ
Explanation:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.