Answer:
Follows are the answer to this question:
Explanation:
pleas find the attachment file.
Formula for ΔE:

to calculate the value for ΔE put the value in above formula:
Answer:
ΔrxnH = -580.5 kJ
Explanation:
To solve this question we are going to help ourselves with Hess´s law.
Basically the strategy here is to work in an algebraic way with the three first reactions so as to reprduce the desired equation when we add them together, paying particular attention to place the reactants and products in the order that they are in the desired equation.
Notice that in the 3rd reaction we have 2 mol Na₂O (s) which is a reactant but with a coefficient of one, so we will multiply this equation by 1/2-
The 2nd equation has Na₂SO₄ as a reactant and it is a product in our required equation, therefore we will reverse the 2nd . Note the coefficient is 1 so we do not need to multiply.
This leads to the first equation and since we need to cancel 2 NaOH, we will nedd to multiply by 2 the first one.
Taking 1/2 eq 3 + (-) eq 2 + 2 eq 1 should do it.
Na₂O (s) + H₂ (g) ⇒ 2 Na (s) + H₂O(l) ΔrxnHº = 259 / 2 kJ 1/2 eq3
+ 2NaOH(s) + SO₃(g) ⇒ Na₂SO₄ (s) + H₂O (l) ΔrxnHº = -418 kJ - eq 2
+ 2Na (s) + 2 H₂O (l) ⇒ 2 NaOH (s) + H₂ (g) ΔrxnHº = -146 x 2 2 eq 1
<u> </u>
Na₂O (s) + SO₃ (g) ⇒ Na₂SO₄ (s) ΔrxnHº = 259/2 + (-418) + (-146) x 2 kJ
ΔrxnH = -580.5 kJ
it is a great change because the salt goes in and turn the water to salt water
Matter is anything that has mass and occupies space, It can exist in 3 states, or phases: solid, liquid, and gas.
Solid molecules are closely packed together and retain a fixed shape.
Liquid molecules aren't packed very closely, and take the shape of the bottom of the container.
Gas molecules are far apart and fill the container
completely.
5 g of potassium oxalate react to produce 0.03 moles of calcium oxalate.
Calcium oxalate (CaC₂O₄) is obtained by the reaction of 5 g of potassium oxalate (K₂C₂O₄).
We can calculate the moles of CaC₂O₄ obtained considering the following relationships.
- The molar mass of K₂C₂O₄ is 184.24 g/mol.
- The mole ratio of K₂C₂O₄ to CaC₂O₄ is 2:1.

5 g of potassium oxalate react to produce 0.03 moles of calcium oxalate.
Learn more: brainly.com/question/15288923