Answer:
a) v = 0.8 m / s
, b)
= 0.777 m / s
, c) ΔK = 0.93 J
Explanation:
This exercise can be solved using the concepts of moment, first let's define the system as formed by the two blocks, so that the forces during the crash have been internal and the moment is conserved.
They give us the mass of block 1 (m1 = 100kg, its kinetic energy (K = 32 J), the mass of block 2 (m2 = 3.00 kg) and that it is at rest (v₀₂ = 0)
Before crash
po = m1 vo1 + m2 vo2
po = m1 vo1
After the crash
= (m1 + m2) 
a) The initial speed of the block of m1 = 100 kg, let's use the kinetic energy
K = ½ m v²
v = √2K / m
v = √ (2 32/100)
v = 0.8 m / s
b) The final speed,
p₀ =
m1 v₀1 = (m1 + m2) 
= m1 / (m1 + m2) v₀₁
The initial velocity is calculated in the previous part v₀₁ = v = 0.8 m / s
= 100 / (3 + 100) 0.8
= 0.777 m / s
c) The change in kinetic energy
Initial K₀ =
K₀ = 32 J
Final
= ½ (m1 + m2)
²
= ½ (3 + 100) 0.777²
= 31.07 J
ΔK =
- K₀
ΔK = 31.07 - 32
ΔK = -0.93 J
As it is a variation it could be given in absolute value
Part D
For this part s has the same initial kinetic energy K = 32 J, but it is block 2 (m2 = 3.00kg) in which it moves
d) we use kinetic energy
v = √ 2K / m2
v = √ (2 32/3)
v = 4.62 m / s
e) the final speed
v₀₂ = v = 4.62 m/s
p₀ = m2 v₀₂
m2 v₀₂ = (m1 + m2) 
= m2 / (m1 + m2) v₀₂
= 3 / (100 + 3) 4.62
= 0.135 m / s
f) variation of kinetic energy
= ½ (m1 + m2)
²
= ½ (3 + 100) 0.135²
= 0.9286 J
ΔK = 0.9286-32
ΔK = 31.06 J
Answer:
Mirages happen when the ground is very hot and the air is cool.
Explanation:
They happen when light passes through two layers of air with different temperatures. The desert sun heats the sand, which in turn heats the air just above it. The hot air bends light rays and reflects the sky.
When you see it from a distance, the different air masses colliding with each other act as a mirror.
Answer:
(a). The acceleration is 8.3 rad/s².
(b). The time is 3.0 sec.
Explanation:
Given that,
Rotation = 20.0 times
Time = 5.00 sec
We need to calculate the angular frequency
Using formula of angular frequency

put the value into the formula


We need to calculate the angular displacement
Using formula of angular displacement

We need to calculate the angular acceleration
Using equation of angular motion




Negative sign shows the opposite direction of the motion.
The acceleration is 8.3 rad/s².
We need to calculate the time
Using equation of angular motion




The time is 3.0 sec.
Hence, (a). The acceleration is 8.3 rad/s².
(b). The time is 3.0 sec.
Answer:
841.5 Hz
Explanation:
Given
y = 50 cm = 0.5 m
d = 5.00 m
L = 12.0 m away from the wall
v = speed of sound = 343 m/s
The image of the scenario is presented in the attached image.
When destructive interference is being experienced from 50 cm (0.5 m) parallel to the wall, the path difference between the distance of the two speakers from the observer is equal to half of the wavelength of the wave.
Let the distance from speaker one to the observer's new position be d₁
And the distance from the speaker two to the observer's new position be d₂
(λ/2) = |d₁ - d₂|
d₁ = √(12² + 3²) = 12.3693 m
d₂ = √(12² + 2²) = 12.1655 m
|d₁ - d₂| = 0.2038 m
(λ/2) = |d₁ - d₂| = 0.2038
λ = 0.4076 m
For waves, the velocity (v), frequency (f) and wavelength (λ) are related thus
v = fλ
f = (v/λ) = (343/0.4076) = 841.5 Hz
Hope this Helps!!!
When two stars are bound together gravitationally and orbit a common mass, theyre known as B. BINARY STARS.