Answer:
1st Blank: <em>1 Co</em>
2nd Blank:<em> 2 Na2S</em>
3rd Blank:<em> 4 Na</em>
4th Blank:<em> 1 CoS2</em>
Explanation:
<em>Trust me</em>
The problem is incomplete. However, there can only be two probable questions for this problem. First, you can be asked the individual partial pressures of each gas. Second, you can be asked the volume occupied by each gas. I can answer both cases for you.
1.
Let's assume ideal gas.
Pressure for N₂: 2 bar*0.4 = 0.8 bar
Pressure for CO₂: 2 bar*0.5 = 1 bar
Pressure for CH₄: 2 bar*0.1 = 0.2 bar
2. For the volume, let's find the total volume first.
V = nRT/P = (1 mol)(8.314 J/mol-K)(30 +273 K)/(2 bar*10⁵ Pa/1 bar)
V = 0.0126 m³
Hence,
Volume for N₂: 0.0126 bar*0.4 = 0.00504 m³
Volume for CO₂: 0.0126*0.5 = 0.0063 m³
Volume for CH₄: 0.0126*0.1 = 0.00126 m³
In a food chain we arrange the energy in the form of a pyramid.
The producers are on the base of pyramid and then consumers are towards peak.
in the given food chain grass is being eaten by grasshopper which are food of birds.
Grasshoppers are also eaten up by Hawks. so both brids and hawks are feeding upon grasshoppers thus the amount of energy transferred from the grass to the grasshopper is the same as the amount of energy transferred from the grasshopper to the bird.