1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
3 years ago
7

Ive never seen a question like this tbh

Mathematics
2 answers:
Vikki [24]3 years ago
6 0
The formula A=1/2bh is used to find the area of a triangle. You can find from the diagram that the base of this triangle is 9cm, and the height is 4cm. Plug those numbers into the area of a triangle formula.

A=1/2(9)(4)

Multiply to get 18 square cm, which is choice D.
bulgar [2K]3 years ago
4 0
Easiest question I have ever seen! :)
We know the formula of the area of a triangle
  =\frac{1}{2}×base×height
 The height given is 4 cm (we should take the perpendicular height)
  And the base length is 8 cm
Simply, we just substitute the given numbers
  =\frac{1}{2}×8×4
  =18 cm²
The answer is D: 18 square m
You might be interested in
(20 points) A 2-liter bottle of soda (67.6 ounces) costs $1.89. A case of twelve 12 ounce
horrorfan [7]

Answer:

  • Unit price of a 2-liter bottle of soda: \$0.028\ per\ ounce
  • Unit price of a case of twelve 12 ounce  cans: \$0.021\ per\ ounce
  • The better bargain is the case of 12 ounce cans.

Step-by-step explanation:

Let be "x" the unit price (price/ounce) of the soda in the 2-liter bottle and "y"  the unit price (price/ounce) of the soda in the case  of twelve 12 ounces cans.

According to the data provided in the exercise, you know that:

1. The 2-liter bottle of soda  is equal to 67.6 ounces.

2. That bottle costs  $1.89

Then, the unit price is:

x=\frac{1.89}{67.6}\\\\x\approx0.028

3. There are 12 ounce  cans in the case. Then the total ounces is:

12\ oz*12=144\ oz

4. It costs $2.99.  So the unit price is:

y=\frac{2.99}{144}\\\\y\approx0.021

Since:

y

The better bargain is the case of 12 ounce cans.

5 0
3 years ago
Snack Packets
larisa86 [58]
One snack packet will cost 80 cents
7 0
3 years ago
A rectangle that is 2 inches by 3 inches has heen scaled by a factor of 7.
ahrayia [7]

Answer:

1. 14 inches and 21 inches

2.

\frac{1}{7}

Step-by-step explanation:

1.Since the rectangle has been increased by a factor of 7. Therefore

2 \times 7 = 14 \\ 3 \times 7 = 21

2. As you have increased it by a factor of 7. To reduce it, multiply by a factor of

\frac{1}{7}

3 0
3 years ago
Find the value of x <br> Picture attached
mash [69]
Its D no se porque pero es d
5 0
3 years ago
When integrating polar coordinates, when should one use the polar differential element, <img src="https://tex.z-dn.net/?f=rdrd%2
vitfil [10]
To answer your first question: Whenever you convert from rectangular to polar coordinates, the differential element will *always* change according to

\mathrm dA=\mathrm dx\,\mathrm dy\implies\mathrm dA=r\,\mathrm dr\,\mathrm d\theta

The key concept here is the "Jacobian determinant". More on that in a moment.

To answer your second question: You probably need to get a grasp of what the Jacobian is before you can tackle a surface integral.

It's a structure that basically captures information about all the possible partial derivatives of a multivariate function. So if \mathbf f(\mathbf x)=(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)), then the Jacobian matrix \mathbf J of \mathbf f is defined as

\mathbf J=\begin{bmatrix}\mathbf f_{x_1}&\cdots&\mathbf f_{x_n}\end{bmatrix}=\begin{bmatrix}{f_1}_{x_1}&\cdots&{f_m}_{x_n}\\\vdots&\ddots&\vdots\\{f_m}_{x_1}&\cdots&{f_m}_{x_n}\end{bmatrix}

(it could be useful to remember the order of the entries as having each row make up the gradient of each component f_i)

Think about how you employ change of variables when integrating a univariate function:

\displaystyle\int2xe^{x^2}\,\mathrm dr=\int e^{x^2}\,\mathrm d(x^2)\stackrel{y=x^2}=\int e^y\,\mathrm dy=e^{r^2}+C

Not only do you change the variable itself, but you also have to account for the change in the differential element. We have to express the original variable, x, in terms of a new variable, y=y(x).

In two dimensions, we would like to express two variables, say x,y, each as functions of two new variables; in polar coordinates, we would typically use r,\theta so that x=x(r,\theta),y=y(r,\theta), and

\begin{cases}x(r,\theta)=r\cos\theta\\y(r,\theta)=r\sin\theta\end{cases}

The Jacobian matrix in this scenario is then

\mathbf J=\begin{bmatrix}x_r&y_\theta\\y_r&y_\theta\end{bmatrix}=\begin{bmatrix}\cos\theta&-r\sin\theta\\\sin\theta&r\cos\theta\end{bmatrix}

which by itself doesn't help in integrating a multivariate function, since a matrix isn't scalar. We instead resort to the absolute value of its determinant. We know that the absolute value of the determinant of a square matrix is the n-dimensional volume of the parallelepiped spanned by the matrix's n column vectors.

For the Jacobian, the absolute value of its determinant contains information about how much a set \mathbf f(S)\subset\mathbb R^m - which is the "value" of a set S\subset\mathbb R^n subject to the function \mathbf f - "shrinks" or "expands" in n-dimensional volume.

Here we would have

\left|\det\mathbf J\right|=\left|\det\begin{bmatrix}\cos\theta&-r\sin\theta\\\sin\theta&r\cos\theta\end{bmatrix}\right|=|r|

In polar coordinates, we use the convention that r\ge0 so that |r|=r. To summarize, we have to use the Jacobian to get an appropriate account of what happens to the differential element after changing multiple variables simultaneously (converting from one coordinate system to another). This is why

\mathrm dx\,\mathrm dy=r\,\mathrm dr\,\mathrm d\theta

when integrating some two-dimensional region in the x,y-plane.

Surface integrals are a bit more complicated. The integration region is no longer flat, but we can approximate it by breaking it up into little rectangles that are flat, then use the limiting process and add them all up to get the area of the surface. Since each sub-region is two-dimensional, we need to be able to parameterize the entire region using a set of coordinates.

If we want to find the area of z=f(x,y) over a region \mathcal S - a region described by points (x,y,z) - by expressing it as the identical region \mathcal T defined by points (u,v). This is done with

\mathbf f(x,y,z)=\mathbf f(x(u,v),y(u,v),z(u,v))

with u,v taking on values as needed to cover all of \mathcal S. The Jacobian for this transformation would be

\mathbf J=\begin{bmatrix}x_u&x_v\\y_u&y_v\\z_u&z_v\end{bmatrix}

but since the matrix isn't square, we can't take a determinant. However, recalling that the magnitude of the cross product of two vectors gives the area of the parallelogram spanned by them, we can take the absolute value of the cross product of the columns of this matrix to find out the areas of each sub-region, then add them. You can think of this result as the equivalent of the Jacobian determinant but for surface integrals. Then the area of this surface would be

\displaystyle\iint_{\mathcal S}\mathrm dS=\iint_{\mathcal T}\|\mathbf f_u\times\mathbf f_v\|\,\mathrm du\,\mathrm dv

The takeaway here is that the procedures for computing the volume integral as opposed to the surface integral are similar but *not* identical. Hopefully you found this helpful.
5 0
3 years ago
Other questions:
  • The following sequence is an arithmetic sequence what comes next ? 7,___,17
    9·1 answer
  • What is a 5th of a kilogram
    10·2 answers
  • I need the answer plzz help me
    10·2 answers
  • If<br><img src="https://tex.z-dn.net/?f=v%20%3D%20%20%5Cfrac%7B1%7D%7B%203%7D%20%5Cpi%5E%7B2%7D%20h" id="TexFormula1" title="v =
    15·1 answer
  • WRITE AN EQUATION
    9·1 answer
  • What is the value of the following expression?
    12·2 answers
  • What is the value of w?...
    13·1 answer
  • A jar contains 15 quarters, 9 dimes, 10 nickels and 6 pennies. A coin is selected at random, not replaced, then another coin is
    13·1 answer
  • PLEASE HELP FOR BRAINLIEST
    9·1 answer
  • PLEASE HELP If a fair coin is tossed 9 times, what is the probability, to the nearest thousandth, of getting exactly 1 heads?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!