Answer:
Tyre
In cold weather, you might have regularly kept a check on the pressure of the tyres of your car. Driving increases the temperature of the tyres, and, therefore, the air inside the tyre warms and expands. When you measure the pressure of the tyres at the time when you have just driven the car, it will be high. However, in cold weather, the pressure of the tyres will be low. So, it is recommended that you should always measure the pressure of the tyres.
Answer:
<em> ionic equation : </em>3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em> net ionic equation: </em>3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)
Explanation:
The balanced equation is
3FeSO4(aq)+ 2Na3PO4(aq) → Fe3(PO4)2(s)+ 3Na2SO4(aq)
<em>Ionic equations: </em>Start with a balanced molecular equation. Break all soluble strong electrolytes (compounds with (aq) beside them) into their ions
. Indicate the correct formula and charge of each ion. Indicate the correct number of each ion
. Write (aq) after each ion
.Bring down all compounds with (s), (l), or (g) unchanged. The coefficents are given by the number of moles in the original equation
3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em>Net ionic equations: </em>Write the balanced molecular equation. Write the balanced complete ionic equation. Cross out the spectator ions, it means the repeated ions that are present. Write the "leftovers" as the net ionic equation.
3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)
Answer: A bike
A bike is composed of various simple machines. It has a wheel and axle as one component, and it also has screws to hold the various parts together, along with levers and pulleys that are connected to the pedals. So all of these simple machine concepts work together to help transport the rider from point A to point B.
The other answer choices of screw, inclined plane, and lever, are fairly simple machines that don't have many things going on at once compared to a bike.
One would be phosporous whose configuration is 1s2 2s2 2p6 3s2 3p3
Answer: It's equal to 10^(-2.3), or 0.00501 M, or 5.01 * 10^-3 moles/Liter
Explanation:
Well, pH = - log[H+]
Or, in words, pH is equal to -1 multiplied by the logarithm (base 10) of the hydrogen ion concentration.
So you have 2.3 = -log[H+]. We want to isolate the H+, so let's start simplifying the right hand side of the equation. First, we multiply both sides by -1.
-2.3=log[H+]
Now, the definition of a logarithm says that if the log (base 10) of [H+] is -2.3, then 10 raised to the -2.3 power is [H+]
So on each side of the equation, we raise 10 to the power of that side of the equation.
10^(-2.3) = 10^(log[H+])
and because 10^log cancels out...
10^(-2.3) = [H+]
Now we've solved for [H+], the hydrogen ion concentration!