Answer:
THEY ALL INVOLVE FIGHTING PATHOGENS
Explanation:
The immune system which is involved in defending the body against infections are diseases involves three lines of defense which are all involved in fighting against pathogens. Pathogens are invaders which when introduced into the body causes harm and therefore makes us sick. The body's first line of defense includes the physical barriers such as the skin, mucous membrane; chemical barriers such as tears, saliva, gastric acid in the stomach. These helps to keep the pathogens from entering the delicate parts of the body and once the pathogens find their way out of the reach of the first line of defense, the second line of defense is initiated. This includes inflammatory effects, swelling, redness, phagocytosis by neutrophils and macrophages. The third line of defense is the actions of lymphocytes which acts on invading microbes. The lymphocytes are of two types; the B and T cells. B cells produces antibodies which fight the antigens and T cells attack the infected cells of the body. There is also the memory cells which keeps information about the invading microbes for future attacks. This enables the body to respond swiftly when next the same type of pathogens attack.
Answer:
Types of Hydrolysis
There are several types of hydrolysis, and we will look at them in brief below.
Salts: This is the most common type of hydrolysis. Hydrolysis of salts generally refers to the reaction of salt with water where it involves the interaction between cations or anions of salts and water. During hydrolysis, a salt breaks down to form ions, completely or partially depending upon the solubility factor.
Acid and Base: Acid–base-catalysed hydrolysis can be found during the hydrolysis of esters or amides. Here, the process of hydrolysis occurs when water or hydroxyl ion reacts with the carbon of the carbonyl group of the ester or amide where new compounds are formed. The products of both hydrolysis are compounds with carboxylic acid groups.
ATP: Most biochemical reactions that occur in living organisms are in the form of ATP hydrolysis which takes place with the help of enzymes acting as catalysts. The catalytic action of enzymes allows the hydrolysis or breaking down of proteins, lipids, oils, fats and carbohydrates.
Explanation:
Answer:
i am so sorry. i do not have a answer but i am trying to find questioms i can answer
Henderson–Hasselbalch equation is given as,
pH = pKa + log [A⁻] / [HA]
-------- (1)
Solution:
Convert Ka into pKa,
pKa = -log Ka
pKa = -log 1.37 × 10⁻⁴
pKa = 3.863
Putting value of pKa and pH in eq.1,
4.29 = 3.863 + log [lactate] / [lactic acid]
Or,
log [lactate] / [lactic acid] = 4.29 - 3.863
log [lactate] / [lactic acid] = 0.427
Taking Anti log,
[lactate] / [lactic acid]
= 2.673
Result:
2.673 M
lactate salt when mixed with 1 M Lactic acid produces a buffer of pH = 4.29.
6.022×10^23 should be correct. Are there any options to choose from?
<u>Avogadros number</u>