Answer:
B
Explanation:
As you can see in these 4 examples, B- looks completely different from A, C, D! In B: The reactants and products are completely different in the Element Figures.
Use the formula E=hv, h=plancks constant and v=frequency
use the formula c=v*lambda to find v
the answer will be 2.88*10^-23J
<h3>
Answer:</h3>
0.424 J/g °C
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Chemistry</u>
<u>Thermochemistry</u>
Specific Heat Formula: q = mcΔT
- q is heat (in Joules)
- m is mass (in grams)
- c is specific heat (in J/g °C)
- ΔT is change in temperature
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] m = 38.8 g
[Given] q = 181 J
[Given] ΔT = 36.0 °C - 25.0 °C = 11.0 °C
[Solve] c
<u>Step 2: Solve for Specific Heat</u>
- Substitute in variables [Specific Heat Formula]: 181 J = (38.8 g)c(11.0 °C)
- Multiply: 181 J = (426.8 g °C)c
- [Division Property of Equality] Isolate <em>c</em>: 0.424086 J/g °C = c
- Rewrite: c = 0.424086 J/g °C
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.424086 J/g °C ≈ 0.424 J/g °C
The reason why a wave get taller as it gets closer to shore is that the shallow water at the bottom of the wave makes the wave length smaller. Option B
<h3>What is a wave?</h3>
A wave is a disturbance that occurs along a medium which transmits energy. Now we now that waves travel from place to place. The horizontal distance that is travelled by a wave is what we call the wavelength of the wave.
As the wave approaches the shore, the wave tends to slow down because it is dragged from beneath. In the process, the wave grows taller. Thus, the reason why a wave get taller as it gets closer to shore is that the shallow water at the bottom of the wave makes the wave length smaller. Option B
Learn more about wavelength:brainly.com/question/13533093
#SPJ1