Answer:
1.12M
Explanation:
Given parameters:
Volume of solution = 2.5L
Mass of Calcium phosphate = 600g
Unknown:
Concentration = ?
Solution:
Concentration is the number of moles of solute in a particular solution.
Now, we find the number of moles of the calcium phosphate from the given mass;
Formula of calcium phosphate = Ca₃PO₄
molar mass = 3(40) + 31 + 4(16) = 215g/mol
Number of moles of Ca₃PO₄ = = 2.79moles
Now;
Concentration =
Concentration = = 1.12M
Answer:
Rate = -1/2 Δ[SO<sub>2</sub>]/Δt
so its gonna be (in more simple terms) rate= -1/2Δ(SO2)/Δt
Explanation:
Since there's specific heat, you should use Q=mc△T. Depends on if this question also involves phase change or not, you might will need Lf (latent heat of fusion) or Lv (latent heat of vaporisation).
Answer:
(c) P and Sb
Explanation:
We can determine the number of valence electrons of an element:
- If it belongs to Groups 1 and 2, the number of valence electrons is equal to the number of group and the differential electron occupies the s subshell.
- If it belongs to the groups 13-18, the number of valence electrons is equal to: "Number of group - 10" and the differential electron occupies the p subshell.
Which pair of elements have the same valence electronic configuration of np³?
(a) O and Se. NO. They belong to the group 16 and the valence electron configuration is ns² np⁴.
(b) Ge and Pb. NO. They belong to the group 14 and the valence electron configuration is ns² np².
(c) P and Sb. YES. They belong to the group 15 and the valence electron configuration is ns² np³.
(d) K and Mg. NO. They belong to the groups 1 and 2 and the valence electron configuration is ns¹ and ns².
(e) Al and Ga. NO. They belong to the group 13 and the valence electron configuration is ns² np¹.