<span>Research shows that fabric softeners decrease flame resistance. The flame resistance of a fabric can be increased in a variety of ways. Most often, the fabric is treated with special flame resistant chemicals. Synthetic fabrics, such as polyester, are naturally flame resistant. These fabrics have a property called thermoplasticity, where the fabric naturally melts and shrinks when exposed to flame. This prevents these fabrics from igniting and burning as easily as other fabrics. Basic properties of a fabric, such as porosity, can also influence flame resistance. Larger pores allow for oxygen to be more present in the fabric, making it more flammable.</span>
Answer:
Near the boiling point of the solvent
Explanation:
The process of recrystallization is hinged on the fact that the amount of solute that can be dissolved by a solvent increases with temperature. The process involves creation of a solution by dissolving a solute in a solvent at or near its boiling point. At the boiling point of the solvent, the solute has a greater solubility in the solvent; not much volume of the hot solvent is required to dissolve the solute.
Before the solution is later cooled, you can now filter out insoluble impurities from the hot solvent. The quantity of the original solute drops appreciably because impurities have been removed. At this lower temperature, the solution becomes saturated and the solute can no longer be held in solution hence it forms pure crystals of solute, which can be recovered.
Recrystallization must be carried out using the proper solvent. The solute must be relatively insoluble in the solvent at room temperature but more soluble in the solvent at elevated temperature.
On adding salt.....The boiling temperature increases.....
So ∆t= KB * molality
=O.52*(58/58)/4
= O.52*1/4
= 0.13
So increase is 100+.13=100.13°c
Considering ideal gas:
PV= RTn
T= 25.2°C = 298.2 K
P1= 637 torr = 0.8382 atm
V1= 536 mL = 0.536 L
:. R=0.082 atm.L/K.mol
:. n= (P1V1)/(RT) = ((0.8382 atm) x (0.536 L))/
((0.082 atmL/Kmol) x (298.2K))
:. n= O.0184 mol
Then,
P2= 712 torr = 0.936842 atm
V2 = RTn/P2 = [(0.082atmL/
Kmol) x (298.2K) x (0.0184mol) ]/(0.936842atm)
:.V2 = 0.4796 L
OR
V2 = 479.6 ml
There are three subatomic particles known: (1) electron which is found outside the nucleus of an atom and (2 and 3) protons and neutrons which are both inside the nucleus. As they are outside the nucleus, it is easier to transport electron than any other subatomic particle. Thus, atom and its ion differ in the number of electrons.