Answer:
Explanation:
Following are a few consequences of fossil fuels
1. It causes air pollution.
2. When they are burned, they produce toxic substances which leads to global warming.
3. Waste products are hazardous to public health and environment.
4. They are non - renewable and unsustainable.
5. Drilling fossil fuels is a dangerous process
Hope this helps
plz mark as brainliest!!!!
Answer:
30.3 g
Explanation:
At STP, 1 mol of any gas will occupy 22.4 L.
With the information above in mind, we <u>calculate how many moles are there in 32.0 L</u>:
- 32.0 L ÷ 22.4 L/mol = 1.43 mol
Then we <u>calculate how many moles would there be in 16.6 L</u>:
- 16.6 L ÷ 22.4 L/mol = 0.741 mol
The <u>difference in moles is</u>:
- 1.43 mol - 0.741 mol = 0.689 mol
Finally we <u>convert 0.689 moles of CO₂ into grams</u>, using its <em>molar mass</em>:
- 0.689 mol * 44 g/mol = 30.3 g
I really do not want you to get it wrong but i will go with nitride ion, oxide ion, sodium ion, magnesium ion
Answer:
V = 22.42 L/mol
N₂ and H₂ Same molar Volume at STP
Explanation:
Data Given:
molar volume of N₂ at STP = 22.42 L/mol
Calculation of molar volume of N₂ at STP = ?
Comparison of molar volume of H₂ and N₂ = ?
Solution:
Molar Volume of Gas:
The volume occupied by 1 mole of any gas at standard temperature and pressure and it is always equal to 22.42 L/ mol
Molar volume can be calculated by using ideal gas formula
PV = nRT
Rearrange the equation for Volume
V = nRT / P . . . . . . . . . (1)
where
P = pressure
V = Volume
T= Temperature
n = Number of moles
R = ideal gas constant
Standard values
P = 1 atm
T = 273 K
n = 1 mole
R = 0.08206 L.atm / mol. K
Now put the value in formula (1) to calculate volume for 1 mole of N₂
V = 1 x 273 K x 0.08206 L.atm / mol. K / 1 atm
V = 22.42 L/mol
Now if we look for the above calculation it will be the same for H₂ or any gas. so if we compare the molar volume of 1 mole N₂ and H₂ it will be the same at STP.
Answer: the correct option is A (A zero net force causes no change to an object's
motion.)
Explanation:
Force is a vector quantity that causes an object to accelerate or change velocity when pushed or pulled. While a NET FORCE can be defined as the combination of all forces acting on an object which is equally capable of accelerating the object.
When a NET FORCE is equal to zero( that is zero net force),there will be no change to an object's motion. When the net force of an object is equal to zero , it shows the object is in either static equilibrium( the objects velocity is zero) or dynamic equilibrium(where the object is moving at constant velocity). In both cases, the object remains motionless because the net forces is equal to zero.