<u>Answer:</u>
a. Oxidising agent: Cl₂
b. Reducing agent: NaBr
c. Oxidised: NaBr
d. Reduced: Cl₂
e. Oxidation numbers before reaction: Cl= 0, Na= +1, Br= -1
f. Oxidation numbers after reaction: Cl= -1, Na= +1, Br= 0
<u>Explanation:</u>
Oxidising agents reduces themselves, oxidising other elements/compounds.
Reducing agents oxidise themselves, reducing other elements/compounds.
Oxidation is the <u>loss</u> of electrons or an <u>increase</u> in oxidation number.
Reduction is the <u>gain</u> of electrons or <u>decrease</u> in oxidation number.
Here, we are going to calculate the mass % of C in the mixture.
What is a Mixture?
A mixture is composed of one or more pure substances in varying composition. There are two types of mixtures: heterogeneous and homogeneous. Heterogeneous mixtures have visually distinguishable components, while homogeneous mixtures appear uniform throughout.
Given that,
The mass % of CO =35.0% =35.0 g in 100 g mixture
The mass % of CO2 = 65% =65 g in 100 g mixture
Therefore,
The mass of C from CO = 15.007 g C
Similarly,
The mass of C from CO2 = 17.738 g C
Thus, the total mass of C = 15.007 g+17.738 g =32.745 g
Therefore,
The mass % of C= 32.745% =32.7%
Thus, the mass % of C in the mixture is 32.7%
To learn more about carbon-containing compounds click on the link below:
brainly.com/question/13381262
#SPJ4
Answer:
71%
Explanation:
Theoretical Yield = 24
Actual Yield = 17
(Actual Yield/Theoretical Yield)*100% = (17/24)*100% ≈ 71%
Answer:
0.447 pounds
Explanation:
The density of Mercury in grams/mL is 13.55 - I multiplied that by the volume and got approximately 203.25 grams, I then turned it into Kilograms and multiplied by 2.2 lbs / kg.
1.51 x 10²⁵atoms
Explanation:
Given parameters:
Mass of Na = 578g
Unknown:
Number of atoms = ?
Solution:
To find the number of atoms, we must first find the number of moles the given mass contains.
Number of moles = 
molar mass of Na = 23g
Number of moles =
= 25.13moles
1 mole of a substance = 6.02 x 10²³atoms
25.13 mole of Na = 25.13 x 6.02 x 10²³atoms
This gives 1.51 x 10²⁵atoms of Na
Learn more:
Avogadro's constant brainly.com/question/2746374
#learnwithBrainly