<h2>
Answer:</h2>
The rate of deceleration is -0.14
<h2>
Explanation:</h2>
Using one of the equations of motion;
v = u + at
where;
v = final velocity of the boat = 0m/s (since the boat decelerates to a stop)
u = initial velocity of the boat = 25m/s
a = acceleration of the boat
t = time taken for the boat to accelerate/decelerate from u to v = 3 minutes
<em>Convert the time t = 3 minutes to seconds;</em>
=> 3 minutes = 3 x 60 seconds = 180seconds.
<em>Substitute the values of v, u, t into the equation above. We have;</em>
v = u + at
=> 0 = 25 + a(180)
=> 0 = 25 + 180a
<em>Make a the subject of the formula;</em>
=> 180a = 0 - 25
=> 180a = -25
=> a = -25/180
=> a = -0.14
The negative value of a shows that the boat is decelerating.
Therefore, the rate of deceleration of the speed boat is 0.14
Answer:
B) waves speed up
C) waves bend away from the normal
Explanation:
The index of refraction of a material is the ratio between the speed of light in a vacuum and the speed of light in that medium:

where
c is the speed of light in a vacuum
v is the speed of light in the medium
We can re-arrange this equation as:

So from this we already see that if the index of refraction is lower, the speed of light in the medium will be higher, so one correct option is
B) waves speed up
Moreover, when light enters a medium bends according to Snell's Law:

where
are the index of refraction of the 1st and 2nd medium
are the angles made by the incident ray and refracted ray with the normal to the interface
We can rewrite the equation as

So we see that if the index of refraction of the second medium is lower (
), then the ratio
is larger than 1, so the angle of refraction is larger than the angle of incidence:

This means that the wave will bend away from the normal. So the other correct option is
C) waves bend away from the normal
Freezing (liquid to solid)
Deposition (gas to solid)
Condensation (gas to liquid)
All three of these state changes are a result of a energy loss. When considering energy loss it is best to think of situations where temperature has dropped. Less energy in the system results in less energy the substance is exposed to or has available.
The formula for kinetic energy is equal to 1/2mv^2, where "m" is the mass of the object (in kilograms) and "v" is equal to the velocity of the object (in meters per second). To calculate the speed, simply plug in the values and solve.
KE = 0.5mv^2
304 J = 0.5(0.3 kg)v^2 -mass converted from grams to kilograms
v = 45.02 m/s
The baseball is travelling about 45.02 meters per second.
Hope this helps!