Answer: option C. the number of electrons in the atom.
Given that the charge of a proton is the same that the charge of an electron, to be neutral the number of protons has to be the same than the number of electrons.
Here you go I just googled it
Answer:
See explanation
Explanation:
Given that the formula of the compound is Fe2O3, if a coefficient of 2 is placed in front of the formula, that is, if we write 2Fe2O3 . Then;
The number of Fe atoms becomes 2 *2 = 4
The number of oxygen atoms becomes 2*3 = 6
That is why the total number of iron atoms were written down as 4.
Answer: The molarity of KBr in the final solution is 1.42M
Explanation:
We can calculate the molarity of the KBr in the final solution by dividing the total number of moles of KBr in the solution by the final volume of the solution.
We will first calculate the number of moles of KBr in the individual sample before mixing together
In the first sample:
Volume (V) = 35.0 mL
Concentration (C) = 1.00M
Number of moles (n) = C × V
n = (35.0mL × 1.00M)
n= 35.0mmol
For the second sample
V = 60.0 mL
C = 0.600 M
n = (60.0 mL × 0.600 M)
n = 36.0mmol
Therefore, we have (35.0 + 36.0)mmol in the final solution
Number of moles of KBr in final solution (n) = 71.0mmol
Now, to get the molarity of the final solution , we will divide the total number of moles of KBr in the solution by the final volume of the solution after evaporation.
Therefore,
Final volume of solution (V) = 50mL
Number of moles of KBr in final solution (n) = 71.0mmol
From
C = n / V
C= 71.0mmol/50mL
C = 1.42M
Therefore, the molarity of KBr in the final solution is 1.42M