Answer:
c
Step-by-step explanation:
Answer:
7
Step-by-step explanation:
The order of operations tells you to start any evaluation by looking at the innermost set of parentheses first.
Here, that means your first step is to find the value of h(-3). You do that by finding the input (x) value -3 in the table for h(x), and locating the corresponding output, h(x), which is 2.
Now, the problem becomes evaluating g(2).
You do the same thing for that function: locate the input x=2 in the table for g(x) and find the corresponding output: 7.
Now, you know ...
g(h(-3)) = g(2) = 7
Answer:
17x +215/ 5
Step-by-step explanation:
17x +215
5
(a) First find the intersections of

and

:

So the area of

is given by

If you're not familiar with the error function

, then you will not be able to find an exact answer. Fortunately, I see this is a question on a calculator based exam, so you can use whatever built-in function you have on your calculator to evaluate the integral. You should get something around 0.5141.
(b) Find the intersections of the line

with

.

So the area of

is given by


which is approximately 1.546.
(c) The easiest method for finding the volume of the solid of revolution is via the disk method. Each cross-section of the solid is a circle with radius perpendicular to the x-axis, determined by the vertical distance from the curve

and the line

, or

. The area of any such circle is

times the square of its radius. Since the curve intersects the axis of revolution at

and

, the volume would be given by