The emf induced in the second coil is given by:
V = -M(di/dt)
V = emf, M = mutual indutance, di/dt = change of current in the first coil over time
The current in the first coil is given by:
i = i₀
i₀ = 5.0A, a = 2.0×10³s⁻¹
i = 5.0e^(-2.0×10³t)
Calculate di/dt by differentiating i with respect to t.
di/dt = -1.0×10⁴e^(-2.0×10³t)
Calculate a general formula for V. Givens:
M = 32×10⁻³H, di/dt = -1.0×10⁴e^(-2.0×10³t)
Plug in and solve for V:
V = -32×10⁻³(-1.0×10⁴e^(-2.0×10³t))
V = 320e^(-2.0×10³t)
We want to find the induced emf right after the current starts to decay. Plug in t = 0s:
V = 320e^(-2.0×10³(0))
V = 320e^0
V = 320 volts
We want to find the induced emf at t = 1.0×10⁻³s:
V = 320e^(-2.0×10³(1.0×10⁻³))
V = 43 volts
Answer:
11:1
Explanation:
At constant acceleration, an object's position is:
y = y₀ + v₀ t + ½ at²
Given y₀ = 0, v₀ = u, and a = -g:
y = u t − ½g t²
After 6 seconds, the ball reaches the maximum height (v = 0).
v = at + v₀
0 = (-g)(6) + u
u = 6g
Substituting:
y = 6g t − ½g t²
The displacement between t=0 and t=1 is:
Δy = [ 6g (1) − ½g (1)² ] − [ 6g (0) − ½g (0)² ]
Δy = 6g − ½g
Δy = 5½g
The displacement between t=6 and t=7 is:
Δy = [ 6g (7) − ½g (7)² ] − [ 6g (6) − ½g (6)² ]
Δy = (42g − 24½g) − (36g − 18g)
Δy = 17½g − 18g
Δy = -½g
So the ratio of the distances traveled is:
(5½g) / (½g)
11 / 1
The ratio is 11:1.
Answer:
eukaryotic cells
Explanation:
"Smooth endoplasmic reticulum (sER) is (a part of) endoplasmic reticulum that is tubular in form and lacks ribosomes. It is present in eukaryotic cells and is associated with lipid synthesis, carbohydrate metabolism, regulation of calcium concentration, and drug detoxification"
source: biologyonline
Relative motion means a motion relative to a reference point. We can also say, relative motion means motion referred or observed from a reference point.
For example, Alex is in a train and Ace is at the station, when the train starts moving, for Ace it is moving at a speed of 10 m/s, but for Alex it is moving at 0 m/s, or we can say that it is at rest for Alex, but in motion for Ace. This is relative motion.
True ..............................