1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reika [66]
4 years ago
11

The earth's magnetic field deflects the flow of current from?

Physics
1 answer:
alexgriva [62]4 years ago
7 0
I don't really know the answer but maybe north pole and south pole?
You might be interested in
Mercury is in the 80th position in the periodic table. How many protons does it have?
Verdich [7]
Mercury has 80 protons. Ironic? 
7 0
3 years ago
Read 2 more answers
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
3 years ago
Read 2 more answers
Which of the following mixture can be separate using decantation method?​
vivado [14]

Answer:

Hi sorry for answering here but you didnt put the options there

Explanation:

I'll still try to answer though so maybe the mixture from one of the questions might be something like oil and water which don't mix and can be separated by decantation so something similar would work. Hope this helps

3 0
3 years ago
a 100g ice cube at 0 degrees celsius is placed in 650 grams of water at 25 degrees celsius. When the mixture reaches equillibriu
Artyom0805 [142]

Answer:

The latent heat of fusion of water is 334.88 Joules per gram of water.

Explanation:

Let the latent heat of ice be 'x' J/g

1) Thus heat absorbed by 100 gram of ice to get converted into water equals

Q_1=100\times x

2) heat energy required to raise the temperature of water from 0 to 25 degree Celsius equals

Q_2=100\times 4.186\times 11=4604.6Joules

Thus total energy needed equals Q_1+Q_2=100x+4604.6

3) Heat energy released by the decrease in the temperature of water from 25 to 11 degree Celsius is

Q_3=650\times 4.186\times (25-11)\\\\Q_{3}=38092.6Joules

Now by conservation of energy we have

Q_1+Q_2=Q_3\\\\100x+4604.6=38092.6\\\\\therefore x=\frac{38092.6-4604.6}{100}=334.88J/g

6 0
3 years ago
As a cold air mass advances on a warm air mass, what usually comes before it?​
Marina CMI [18]

Answer: A cold front occurs when a cold air mass advances into a region occupied by a warm air mass. If the boundary between the cold and warm air masses doesn't move, it is called a stationary front.

Explanation: Two types of occluded front exist: the warm-type and the cold-type. They’re distinguished by the relative temperatures of the air mass ahead of the occlusion – in other words, the air mass ahead of the original warm front – and the air mass behind the cold front. If the air behind the cold front is colder than the air ahead of the occlusion, it shoves beneath that air (because it’s denser) to form a cold-type occluded front. If the air behind the cold front is warmer than the air ahead, it rides over it to form a warm-type occluded front – which appears to be the more common case. In either situation, the lighter warm air representing the air mass originally between the warm and cold fronts sits above the boundary between the two cooler air masses.

Hope this helps!!

8 0
3 years ago
Other questions:
  • Which of the following best describes a capacitor
    14·2 answers
  • An object with a mass of m = 3.00 kg has an initial velocity of vi = 6.00 m/s and a final velocity of vf = −8 m/s.
    5·1 answer
  • What is mass?
    12·1 answer
  • What is the difference between vector and scalar ?
    9·1 answer
  • Diagnostic ultrasound of frequency 4.50 MHz is used to examine tumors in soft tissue. (a) What is the wavelength in air of such
    11·1 answer
  • What do hydroelectric plants use to generate electrical energy?
    7·2 answers
  • What part of that antonym determines if it will combine or break apart from another substance
    6·1 answer
  • A rescue plane wants to drop supplies to isolated mountain climbers on a rocky ridge 235 m below. If the plane is traveling hori
    15·1 answer
  • Based on Nia's notes, what would be the BEST way to investigate the heat transfer based on the movement of the molecules?
    8·2 answers
  • Plains and mountains are examples of formed by processes that shape Earth's surface.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!