Answer:
3
Explanation:
The solution is in the attached files below
Answer:
s = 2.16 x 10¹¹ m
Explanation:
Since, the waves travelling from Earth to the Mars rover are electromagnetic. Therefore, there speed must be equal to the speed of light. So, from the equation given below:
s = vt
where,
s = the distance between Earth and Mars = ?
v = speed of the wave = speed of light = 3 x 10⁸ m/s
t = time taken by the radio signals to reach the rover from Earth
t = (12 min)(60 s/1 min) = 720 s
Therefore,
s = (3 x 10⁸ m/s)(720 s)
<u>s = 2.16 x 10¹¹ m</u>
Answer:
Sand
Explanation:
While the term buoyancy may confuse the reader, the question here is referring to buoyant force.
Buoyant force is the amount of pressure exerted on an object by the liquid it is in. Given by the formula

Where
= Buoyant Force
= Volume of Object submerged in the liquid
= Density of Liquid
= Force of gravity
Since in this question the swimmer with the sand is completely submerged in water, more of the volume of his preserver is under the water hence the buoyant force is greater on it than the swimmer with the Styrofoam (as part of him is not submerged in water)
The motion of particles to one side of the rest position will be the same as the motion of the other side of the rest position in a wave motion. because in a wave motion or wave function, it symmetrical. meaning the motion on the other side will be identical to the other side of the rest position