Answer:
Explanation:
We know that the volume V for a sphere of radius r is

If we got an uncertainty
the formula for the uncertainty of V is:

We can calculate this uncertainty, first we obtain the derivative:


And using it in the formula:



The relative uncertainty is:



Using the values for the problem:

This is, a percent uncertainty of 4.77 %
Answer:
Doing science could be defined as carrying out scientific processes, like the scientific method, to add to science's body of knowledge.
Answer:
The velocity of the Mr. miles is 17.14 m/s.
Explanation:
It is given that,
Mr. Miles zips down a water-slide starting at 15 m vertical distance up the scaffolding, h = 15 m
We need to find the velocity of the Mr. Miles at the bottom of the slide. It is a case of conservation of energy which states that the total energy of the system remains conserved. Let v is the velocity of the Mr. miles. So,

g is the acceleration due to gravity

v = 17.14 m/s
So, the velocity of the Mr. miles is 17.14 m/s. Hence, this is the required solution.
1) First of all, we need to find the distance between the two charges. Their distance on the xy plane is

substituting the coordinates of the two charges, we get

2) Then, we can calculate the electrostatic force between the two charges

and

, which is given by

where

is the Coulomb's constant.
Substituting numbers, we get

and the negative sign means the force between the two charges is attractive, because the two charges have opposite sign.