Answer: 40.84 m
Explanation:
Given
Radius of the disk, r = 2m
Velocity of the disk, v = 7 rad/s
Acceleration of the disk, α = 0.3 rad/s²
Here, we use the formula for kinematics of rotational motion to solve
2α(θ - θ•) = ω² - ω•²
Where,
ω• = 0
ω = v/r = 7/2
ω = 3.5 rad/s
2 * 0.3(θ - θ•) = 3.5² - 0
0.6(θ - θ•) = 12.25
(θ - θ•) = 12.25 / 0.6
(θ - θ•) = 20.42 rad
Since we have both the angle and it's radius, we can calculate the arc length
s = rθ = 2 * 20.42
s = 40.84 m
Thus, the needed distance is 40.84 m
The study of static electricity is electrostatics
Answer:
m2 = 83.3 g
Explanation:
by conservation of momentum principle we have

as both sphere has same speed so 

from conservation of kinetic energy principle we have




substituting this value in above equation to get m2 value

solving for m2 we get

m_1 = 250 g

m2 = 83.3 g
Answer:
See below
Explanation:
280 km east then 190 km north
Use Pythagorean theorem to find the resultant displacement
d^2 = 280^2 + 190^2
d = 338.4 km
Angle will be arctan ( 190/280) = 34.16 °
The best answer is C.
The stability of atoms depends on whether or not their outermost shell is filled with electrons. If the outer shell is filled with electrons, the atom is stable and therefore they do not need to react with other elements to become stable.
On the other hand, atoms with unfilled outer shells are unstable, and will usually form chemical bonds with other atoms to achieve stability. To achieve stability, atoms will form two types of chemical bonds called ionic bonds and covalent bonds.