Answer:
2.85 rad/s
Explanation:
5 cm = 0.05 m
20 g = 0.02 kg
When dropping the 2nd object at a distance of 0.05 m from the center of mass, its corrected moments of inertia is:
So the total moment of inertia of the system of 2 objects after the drop is:
From here we can apply the law of angular momentum conservation to calculate the post angular speed
Answer: smaller
Ultraviolet radiation has broad range of wavelengths, higher
number means greater risk of exposure to UV rays that can be dangerous to skin
cells. Sunlight is the main source of electromagnetic radiation and it is
transmitted in different wavelengths known as electromagnetic spectrum. This spectrum
is divided into several regions in order of decreasing wavelength and increasing
energy and frequency. UV radiation has frequency and energy that is higher than purple
light or violet radiation and the wavelength of ultraviolet radiation
is smaller than violet radiation.
<span> </span>
The solution for this problem is:
Let u denote speed.
Equating momentum before and after collision:
= 0.060 * 40 = (1.5 + 0.060) u
= 2.4 = 1.56 u
= 2.4 / 1.56 = 1.56 u / 1.56
= 1.6 m / s is the answer for this question. This is the speed after the collision.
Answer:
The force on q₁ due to q₂ is (0.00973i + 0.02798j) N
Explanation:
F₂₁ =
Where;
F₂₁ is the vector force on q₁ due to q₂
K is the coulomb's constant = 8.99 X 10⁹ Nm²/C²
r₂₁ is the unit vector
|r₂₁| is the magnitude of the unit vector
|q₁| is the absolute charge on point charge one
|q₂| is the absolute charge on point charge two
r₂₁ = [(9-5)i +(7.4-(-4))j] = (4i + 11.5j)
|r₂₁| =
(|r₂₁|)² = 148.25
= 0.050938(0.19107i + 0.54933j) N
= (0.00973i + 0.02798j) N
Therefore, the force on q₁ due to q₂ is (0.00973i + 0.02798j) N
B strength training I think that’s the answer