One consequence of Newton's third law of motion is that all actions have equal and opposite reactions. <em>(C)</em>
In fact, that's pretty much what the law itself says in so many words.
Answer:
W = F * s
Work done equals applied force * distance traveled
Apparent weight = M g (1 - sin θ) since some of applied force will lighten sled
μ = coefficient of kinetic friction
F cos θ = force applied to motion of sled
s = distance traveled
[μ M g (1 - sin θ)] cos θ * s = work done in moving sled
Note that F = μ M g if applied force is in the horizontal direction
The work-energy theorem explains the idea that the net work - the total work done by all the forces combined - done on an object is equal to the change in the kinetic energy of the object. After the net force is removed (no more work is being done) the object's total energy is altered as a result of the work that was done.
This idea is expressed in the following equation:
is the total work done
is the change in kinetic energy
is the final kinetic energy
is the initial kinetic energy
mark me as brainliest ❤️
Answer: 
Explanation:
Given
mass of ball m=10 kg
It is placed at a height of 150 m
It is dropped from the height and allowed to free fall for 40 m
Velocity acquired by the ball during this fall is given by 
Insert u=0, a=g

Kinetic energy at this instant
