1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zheka24 [161]
3 years ago
6

In comparing molar specific heat for gases under constant pressure CP and constant volume CV, we conclude that (more than one co

uld be correct): _______
a. CP is constant for all gases, and so is CV.
b. Specific heat increases as the number of atoms per molecule increases.
c. Specific heat at constant pressure is higher than at constant volume.
d. Monatomic gases behave like ideal gases.
Physics
1 answer:
Sauron [17]3 years ago
4 0

Answer:

b. Specific heat increases as the number of atoms per molecule increases.

c. Specific heat at constant pressure is higher than at constant volume.

d. Monatomic gases behave like ideal gases.

Explanation:

Specific heat of the gas at constant pressure is usually higher than that of the volume.

i.e.

Cp - Cv = R

where R is usually the gas constant.

However, monoatomic gases are gases that exhibit the behavior of ideal gases. This is due to the attribute of the intermolecular forces which plays a negligible role. Nonetheless, the case is not always true for all temperatures and pressure.

Similarly, the increase in the number of atoms per molecule usually brings about an increase in specific heat. This effect is true as a result of an increase in the total number associated with the degree of freedom from which energy can be separated.

Thus, from above explanation:

Option b,c,d are correct while option (a) is incorrect.

You might be interested in
A 3-kg wheel with a radius of 35 cm is spinning in the horizontal plane about a vertical axis through its center at 800 rev/s. A
Kruka [31]

Answer:

\omega_f = 585.37 \ rev/s

Explanation:

given,

mass of wheel(M) = 3 Kg

radius(r) = 35 cm

revolution (ω_i)=  800 rev/s

mass (m)= 1.1 Kg

I_{wheel} = Mr²

when mass attached at the edge

I' = Mr² + mr²

using conservation of angular momentum

I \omega_i = I' \omega_f

(Mr^2) \times 800 = ( M r^2 + m r^2) \omega_f

M\times 800 = ( M + m )\omega_f

3\times 800 = (3+1.1)\times \omega_f

2400 = (4.1)\times \omega_f

\omega_f = 585.37 \ rev/s

3 0
4 years ago
The kinetic energy of the molecules inside the balloon _______ which
11111nata11111 [884]

Answer:

Increase,.faster

Explanation:

The kinetic energy of the molecules inside the balloon

increases

which means they are moving

faster

I hope this helps you :)

6 0
3 years ago
Two point charges are separated by 10 cm, with an attractive force between them of 15 N. Find the force between them when they a
suter [353]

Answer:

(a) the force is 8.876 N

(b) the magnitude of each charge is 4.085 μC

Explanation:

Part (a)

Given;

coulomb's constant, K = 8.99 x 10⁹ N.m²/C²

distance between two charges, r = 10 cm = 0.1 m

force between the two charges, F = 15 N

when the distance between the charges changes to 13 cm (0.13 m)

force between the two charges, F = ?

Apply Coulomb's law;

F = \frac{Kq_1q_2}{r^2} \\\\let \ Kq_1q_2 = C\\\\F =\frac{C}{r^2} \\\\C = Fr^2\\\\F_1r_1^2 = F_2r_2^2\\\\F_2 =\frac{F_1r_1^2}{r_2^2} \\\\F_2 = \frac{15*0.1^2}{0.13^2} \\\\F_2 = 8.876 \ N

Part (b)

the magnitude of each charge, if they have equal magnitude

F = \frac{KQ^2}{r^2}

where;

F is the force between the charges

K is Coulomb's constant

Q is the charge

r is the distance between the charges

F = \frac{KQ^2}{r^2} \\\\Q = \sqrt{\frac{Fr^2}{K} } \\\\Q =  \sqrt{\frac{15*(0.1)^2}{8.99*10^9} } = 4.085 *10^{-6} \ C\\\\Q = 4.085 \ \mu C

4 0
3 years ago
Several types of radiation may be emitted during radioactive decay. The equation represents
Fittoniya [83]
I think the answer is B
5 0
3 years ago
Read 2 more answers
A motorcycle that is slowing down uniformly. The motorcycle covers 1 ????m=1000 m in 80 sec⁡. The motorcycle then covers the nex
Lynna [10]

Answer:

Part a)

acceleration = -0.042 m/s/s

Part b)

initial speed = 14.17 m/s

final speed = 5.77 m/s

Explanation:

Part a)

Let the initial velocity of the motorcycle is

v_i = v_o

now at the end of 80 s let the speed is

v_f = v_1

after another 120 s let the speed will be

v_f' = v_2

now we know that

d = \frac{v_i + v_f}{2} (t)

d = \frac{v_o + v_1}{2}(80)

1000 = 40(v_o + v_1)

also we know that

v_1 - v_o = a(80)

also we have

1000 = \frac{v_1 + v_2}{2}(120)

1000 = 60(v_1 + v_2)

now we can say

(v_2 + v_1) - (v_o + v_1) = \frac{50}{3} - \frac{50}{2}

also we know

v_2 - v_o = a(120 + 80)

-8.33 = 200 a

a = -0.042 m/s^2

Part b)

now we have

v_1 + v_o = 25

v_1 - v_o = (-0.042)(80)

v_1 = 10.83 m/s

so the starting velocity of the trip is

v_o = 25 - 10.83 = 14.17 m/s

now speed after t = 200 s is given as

v_2 = v_o + at

v_2 = 14.17 - (0.042)(200)

v_2 = 5.77 m/s

5 0
3 years ago
Other questions:
  • What is the potential energy of the bowling ball as it sits on top of a building ?​
    6·1 answer
  • You have a string with a mass of 0.0133 kg. You stretch the string with a force of 8.89 N, giving it a length of 1.97 m. Then, y
    14·1 answer
  • The compound PCl5 decomposes into Cl2 and PCl3. The equilibrium of PCl5(g) Cl2(g) + PCl3(g) has a Keq of 2.24 x 10-2 at 327°C. W
    5·2 answers
  • As its speed increases, what happens to its energy of motion?
    5·1 answer
  • The melting point of potassium thiocyanate determined by a student in the laboratory turned out to be 174.5 oC. The accepted val
    10·1 answer
  • 3. When two liquids are mixed and a solid
    13·1 answer
  • When a wave is bent by traveling from one medium to another
    13·2 answers
  • Heyy! i’ll give brainliest please help
    13·1 answer
  • If you drag a 50kg block across the floor which has a coefficient of friction of .30, what is
    6·1 answer
  • Please answer B, C, E, and D
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!