1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
13

What are alkaline earth metals used for?

Physics
2 answers:
Tomtit [17]3 years ago
6 0

Answer:

C firework

Explanation:

from Quizlet

Makovka662 [10]3 years ago
4 0
The answer is C. Fireworks
You might be interested in
The moon orbits the earth once every 27 days at a distance of 384400 km. The international space station orbits the earth at an
Leno4ka [110]

Answer:

ive never done this befor but i think its 36 times aroud earth a day

Explanation:

384400/400=961  

961% of 27 days is 40minuets

1440/40=36

7 0
2 years ago
A quarterback passes a football from height h = 2.1 m above the field, with initial velocity v0 = 13.5 m/s at an angle θ = 32° a
SOVA2 [1]

Answer:

a)    x = v₀² sin 2θ / g

b)    t_total = 2 v₀ sin θ / g

c)    x = 16.7 m

Explanation:

This is a projectile launching exercise, let's use trigonometry to find the components of the initial velocity

        sin θ = v_{oy} / vo

        cos θ = v₀ₓ / vo

         v_{oy} = v_{o} sin θ

         v₀ₓ = v₀ cos θ

         v_{oy} = 13.5 sin 32 = 7.15 m / s

         v₀ₓ = 13.5 cos 32 = 11.45 m / s

a) In the x axis there is no acceleration so the velocity is constant

         v₀ₓ = x / t

          x = v₀ₓ t

the time the ball is in the air is twice the time to reach the maximum height, where the vertical speed is zero

          v_{y} = v_{oy} - gt

          0 = v₀ sin θ - gt

          t = v_{o} sin θ / g

         

we substitute

       x = v₀ cos θ (2 v_{o} sin θ / g)

       x = v₀² /g      2 cos θ sin θ

       x = v₀² sin 2θ / g

at the point where the receiver receives the ball is at the same height, so this coincides with the range of the projectile launch,

b) The acceleration to which the ball is subjected is equal in the rise and fall, therefore it takes the same time for both parties, let's find the rise time

at the highest point the vertical speed is zero

          v_{y} = v_{oy} - gt

          v_{y} = 0

           t = v_{oy} / g

           t = v₀ sin θ / g

as the time to get on and off is the same the total time or flight time is

           t_total = 2 t

           t_total = 2 v₀ sin θ / g

c) we calculate

          x = 13.5 2 sin (2 32) / 9.8

          x = 16.7 m

5 0
3 years ago
Please help
Allisa [31]

<u>We are given:</u>

Mass of the rocket = 10 kg

Weight of the Rocket = 100 N

Upward thrust applied by the rocket = 400 N

<u>Net upward force on the rocket:</u>

We are given that gravity pulls the rocket with a force of 100 N

Also, the rocket applied a force of 400N against gravity

Net upward force = Upward thrust - Force applied by gravity

Net upward force = 400 - 100

Net upward force = 300 N

<u>Upward Acceleration of the Rocket:</u>

From newton's second law:

F = ma

<em>replacing the variables</em>

300 = 10 * a

a = 30 m/s²

5 0
3 years ago
Please help me with this question​
vovangra [49]

Answer:

1. 12 V

2a. R₁ = 4 Ω

2b. V₁ = 4 V

3a. A = 1.5 A

3b. R₂ = 4 Ω

4. Diagram is not complete

Explanation:

1. Determination of V

Current (I) = 2 A

Resistor (R) = 6 Ω

Voltage (V) =?

V = IR

V = 2 × 6

V = 12 V

2. We'll begin by calculating the equivalent resistance. This can be obtained as follow:

Voltage (V) = 12 V

Current (I) = 1 A

Equivalent resistance (R) =?

V = IR

12 = 1 × R

R = 12 Ω

a. Determination of R₁

Equivalent resistance (R) = 12 Ω

Resistor 2 (R₂) = 8 Ω

Resistor 1 (R₁) =?

R = R₁ + R₂ (series arrangement)

12 = R₁ + 8

Collect like terms

12 – 8 =

4 = R₁

R₁ = 4 Ω

b. Determination of V₁

Current (I) = 1 A

Resistor 1 (R₁) = 4 Ω

Voltage 1 (V₁) =?

V₁ = IR₁

V₁ = 1 × 4

V₁ = 4 V

3a. Determination of the current.

Since the connections are in series arrangement, the same current will flow through each resistor. Thus, the ammeter reading can be obtained as follow:

Resistor 1 (R₁) = 4 Ω

Voltage 1 (V₁) = 6 V

Current (I) =?

V₁ = IR₁

6 = 4 × I

Divide both side by 4

I = 6 / 4

I = 1.5 A

Thus, the ammeter (A) reading is 1.5 A

b. Determination of R₂

We'll begin by calculating the voltage cross R₂. This can be obtained as follow:

Total voltage (V) = 12 V

Voltage 1 (V₁) = 6 V

Voltage 2 (V₂) =?

V = V₁ + V₂ (series arrangement)

12 = 6 + V₂

Collect like terms

12 – 6 = V₂

6 = V₂

V₂ = 6 V

Finally, we shall determine R₂. This can be obtained as follow:

Voltage 2 (V₂) = 6 V

Current (I) = 1.5 A

Resistor 2 (R₂) =?

V₂ = IR₂

6 = 1.5 × R₂

Divide both side by 1.5

R₂ = 6 / 1.5

R₂ = 4 Ω

4. The diagram is not complete

7 0
2 years ago
Which of the following best describes resistance?
kicyunya [14]
B. Impedes the flow of electrons

7 0
3 years ago
Other questions:
  • Why do heavier people have a lower blood and alcohol level?
    13·1 answer
  • Jared is experimenting with a force that is attractive only and the weakest of the fundamental forces. He is experimenting with
    15·2 answers
  • Look at the picture below. The boy is swinging back and forth on the swing. At which point is the potential energy of a swing th
    13·2 answers
  • Which action results from the combination of gravity and inertia working on the moon
    10·2 answers
  • A 4.25 g bullet traveling horizontally with a velocity of magnitude 375 m/s is fired into a wooden block with mass 1.10 kg , ini
    11·1 answer
  • What is the accelration of a 6.4 kg bowling ball if a force of 12n is applied to ir
    8·1 answer
  • The triceps muscle in the back of the upper arm is primarily used to extend the forearm. Suppose this muscle in a professional b
    13·1 answer
  • Jill is pushing a box across the floor. Which represents the upward force perpendicular to the floor?
    9·1 answer
  • Which two statements explain reasons to use a computer program to encode
    5·2 answers
  • You are standing in front of a pool of water and see your face in the water but when a stone is dropped into the pool you no mor
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!