Answer:
i = 0.477 10⁴ B
the current flows in the counterclockwise
Explanation:
For this exercise let's use the Ampere law
∫ B . ds = μ₀ I
Where the path is closed
Let's start by locating the current vines that are parallel to the z-axis, so it must be exterminated along the x-axis and as the specific direction is not indicated, suppose it extends along the y-axis.
From BiotSavart's law, the field must be perpendicular to the direction of the current, so the magnetic field must go in the x direction.
We apply the law of Ampere the segment parallel to the x-axis is the one that contributes to the integral, since the other two have an angle of 90º with the magnetic field
Segment on the y axis
L₀ = (y2-y1)
L₀ = 3-0 = 3 cm
Segment on the point x = 2 cm
L₁ = 3-0
L₁ = 3cm
B L = μ₀ I
B 2L = μ₀ I
i = 2 L B /μ₀
i= 2 0.03 / 4π 10⁻⁷ B
i = 4.77 10⁴ B
The current is perpendicular to the magnetic field whereby the current flows in the counterclockwise
First we need to find the speed of the dolphin sound wave in the water. We can use the following relationship between frequency and wavelength of a wave:

where
v is the wave speed

its wavelength
f its frequency
Using

and

, we get

We know that the dolphin sound wave takes t=0.42 s to travel to the tuna and back to the dolphin. If we call L the distance between the tuna and the dolphin, the sound wave covers a distance of S=2 L in a time t=0.42 s, so we can write the basic relationship between space, time and velocity for a uniform motion as:

and since we know both v and t, we can find the distance L between the dolphin and the tuna:
if you multiply the mass of an object by the acceleration due to gravity, you will obtain the object's weight. mass is an intrinsic property of matter
looks like a good answer ...
Answer:
<em>The current is 1 A</em>
Explanation:
<u>Current in a Series Connection
</u>
When two or more elements are connected in series, all of them have the same current, and the sum of their individual voltages is the total voltage applied to the circuit.
According to Ohm's law:
V=R.I
Where V is the voltage, R is the resistance and I is the current of a circuit.
We have a voltage of V=1.5 V + 1.5 V = 3 V and a resistance of R=3 ohms.
We can calculate the current by solving for I:

The current is 1 A