D, when a moving car suddenly stops, your body is still moving forward until the seatbelt stops you.
When things move, there is always friction. It's what makes cars move in the first place. The inside of the car doesn't move, however the wheels on the car are moving at a rapid pace. When the car stops violently, everything inside the car is thrown. The seat belt acts as a safety precaution if an accident happens.
Mark brainliest?
Answer:
gravitational potential energy.
Explanation:
Gravitational potential energy (GPE) can be defined as an energy possessed by an object or body due to its position above the earth surface.
Mathematically, gravitational potential energy is given by the formula;

Where,
G.P.E represents gravitational potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
This ultimately implies that, anytime there is height, the object must have gravitational potential energy.
Hence, an object possesses gravitational potential energy due to its height (position) and the earth's gravitational force.
Well we know the correct answer cannot be "a" bcause velocity is tangent to the circlular path of an object experienting centripical motion. Velocity DOES NOT point inward in centripical motion.
we know the correct answer cannot be "b" because "t" stands for "time" which cannot point in any direction. so, time cannot point toward the center of a circle and therefore this answer must be incorrect.
I would choose answer choice "c" because both force and centripical acceleration point toward the center of the circle.
I do not think answer choice "d" can be correct because the velocity of the mass moves tangent to the circle. velocity = (change in position) / time. Therefore, by definition the mass is moving in the direction of the velocity which does not point to the center of the circle.
does this make sense? any questions?
Answer:
the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
Explanation:
Given;
height of the cliff, h = 210 m
initial horizontal velocity of the cannonball, Ux = 50 m/s
initial vertical velocity of the cannonball, Uy = 0
The time for the cannonball to reach the ground is calculated as;
The horizontal distance covered by the cannonball before it hits the ground is calculated as;

Therefore, the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
Velocity, because if an object is in motion with no direction we will consider it as speed, but if it has direction we will consider it as Velocity. Hope it helps