Answer:
Fr = 26.83 [N]
Explanation:
To solve this problem we must use the Pythagorean theorem, since the forces are vector quantities, that is, they have magnitude and density. Therefore the Pythagorean theorem is suitable for the solution of this problem.
![F_{r}=\sqrt{(12)^{2}+(24)^{2} } \\F_{r}=26.83[N]](https://tex.z-dn.net/?f=F_%7Br%7D%3D%5Csqrt%7B%2812%29%5E%7B2%7D%2B%2824%29%5E%7B2%7D%20%20%7D%20%5C%5CF_%7Br%7D%3D26.83%5BN%5D)
<em>Quantities that determine the kinetic energy of a body are its </em><em>mass and velocity </em>
Answer: <em>mass and velocity </em>
Explanation:
The kinetic energy of a body is the energy possessed by an object by virtue of its motion. It is given by the equation

Where m represents mass of the body and v represents its velocity.
Two bodies of equal velocity but different mass the heavier body will have greater kinetic energy. When an object is at rest its velocity is equal to zero. Thus its kinetic energy will be zero. Hence it can be concluded that only moving bodies have kinetic energy.
Stationary objects placed at a height possess potential energy which is the energy by virtue of their position or configuration. The total mechanical energy of a system is the sum of potential and kinetic energy.
Explanation:
It is given that,
Spring constant of the spring, k = 15 N/m
Amplitude of the oscillation, A = 7.5 cm = 0.075 m
Number of oscillations, N = 31
Time, t = 15 s
(a) Let m is the mass of the ball. The frequency of oscillation of the spring is given by :

Total number of oscillation per unit time is called frequency of oscillation. Here, 


m = 0.0895 kg
or
m = 89 g
(b) The maximum speed of the ball that is given by :





Hence, this is the required solution.
Answer:
the eagle flew 1,025 km
Explanation:
since the eagle flew for 3 hours at 115 km/h it flew a total of 345 km during that time. During the 5 hours at 136 km/h the eagle flew a total of 680 km.
Answer:
A,B,C,D, and F are correct
Explanation: