The hawk’s centripetal acceleration is 2.23 m/s²
The magnitude of the acceleration under new conditions is 2.316 m/s²
radius of the horizontal arc = 10.3 m
the initial constant speed = 4.8 m/s
we know that the centripetal acceleration is given by
= 
= 23.04/10.3
= 2.23 m/s²
It continues to fly but now with some tangential acceleration
= 0.63 m/s²
therefore the net value of acceleration is given by the resultant of the centripetal acceleration and the tangential acceleration
so
= 
= 
= 2.316 m/s²
So the magnitude of net acceleration will become 2.316 m/s².
learn more about acceleration here :
brainly.com/question/11560829
#SPJ4
As per the question, the mass of meteorite [ m]= 50 kg
The velocity of the meteorite [v] = 1000 m/s
When the meteorite falls on the ground, it will give whole of its kinetic energy to earth.
We are asked to calculate the gain in kinetic energy of earth.
The kinetic energy of meteorite is calculated as -
![Kinetic\ energy\ [K.E]\ =\frac{1}{2} mv^2](https://tex.z-dn.net/?f=Kinetic%5C%20energy%5C%20%5BK.E%5D%5C%20%3D%5Cfrac%7B1%7D%7B2%7D%20mv%5E2)
![=\frac{1}{2}50kg*[1000\ m/s]^2](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D50kg%2A%5B1000%5C%20m%2Fs%5D%5E2)

Here, J stands for Joule which is the S.I unit of energy.
Answer:
(a) 0.345 T
(b) 0.389 T
Solution:
As per the question:
Hall emf, 
Magnetic Field, B = 0.10 T
Hall emf, 
Now,
Drift velocity, 

Now, the expression for the electric field is given by:
(1)
And

Thus eqn (1) becomes
where
d = distance
(2)
(a) When 

(b) When 

Answer:
= 4.38 × 10³⁴kgm²/s
Explanation:
Given that,
mass of moon m = 9.5 × 10²²kg
Orbital radius r = 4.28 × 10⁵km
Orbital period T = 28.9days
T = 28.9 × 24 × 60 × 60
= 2,496,960s
Angular momentum of the moon about the planet
L = mvr
L = mr²w

Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane