Answer:
The magnitude of the electrostatic force is 120.85 N
Explanation:
We can use Coulomb's law to find the electrostatic force between the down quarks.
In scalar form, Coulomb's law states that for charges
and
separated by a distance d, the magnitude of the electrostatic force F between them is:

where
is Coulomb's constant.
Taking the values:


and knowing the value of the Coulomb's constant:

Taking all this in consideration:


The mirror formula for curved mirrors is:

where
f is the focal length of the mirror

is the distance of the object from the mirror

is the distance of the image from the mirror
The sign convention that should be used in order to find the correct values is the following:
-

: positive if the mirror is concave, negative if the mirror is convex
-

: positive if the image is real (located on the same side of the object), negative if it is virtual (located on the opposite side of the mirror)
Your correct answer would be B.
Hope this helps!
Explanation:
The SI unit of power is the kilogram-meter2 per second cubed, which is called the watt (1 W = 1 kg-m2/s3). Since power is the energy used per unit of time, it is derived as the energy/time quotient.
Kelvin is a fundamental unit! It's a lot easier to measure temperature than to measure the motion of component particles. Hence, we can accept it as a fundamental quantity. Time is said to be a fundamental unit because it is not dependent on one or more units
the circutory voltages do the amnesian property of circuits