Answer:
0.2941 = 29.41% probability that it was manufactured during the first shift.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is

In which
P(B|A) is the probability of event B happening, given that A happened.
is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Defective
Event B: Manufactured during the first shift.
Probability of a defective item:
1% of 50%(first shift)
2% of 30%(second shift)
3% of 20%(third shift).
So

Probability of a defective item being produced on the first shift:
1% of 50%. So

What is the probability that it was manufactured during the first shift?

0.2941 = 29.41% probability that it was manufactured during the first shift.
Answer:
52
Step-by-step explanation:
Multiply grams per gallon times gallons to get grams.

This might not be correct but....
I’m going to use rounding,
42 x 2 = 84
84 divides by 3 = 28,
Which is near 30......So the number of people in the group is rounding to about 2 people.
Using the normal distribution, the probabilities are given as follows:
a. 0.4602 = 46.02%.
b. 0.281 = 28.1%.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation
.
The parameters are given as follows:

Item a:
The probability is <u>one subtracted by the p-value of Z when X = 984</u>, hence:


Z = 0.1
Z = 0.1 has a p-value of 0.5398.
1 - 0.5398 = 0.4602.
Item b:

By the Central Limit Theorem:


Z = 0.58
Z = 0.58 has a p-value of 0.7190.
1 - 0.719 = 0.281.
More can be learned about the normal distribution at brainly.com/question/4079902
#SPJ1
here we have to find the quotient of '(16t^2-4)/(8t+4)'
now we can write 16t^2 - 4 as (4t)^2 - (2)^2
the above expression is equal to (4t + 2)(4t - 2)
there is another expression (8t + 4)
the expression can also be written as 2(4t + 2)
now we have to divide both the expressions
by dividing both the expressions we would get (4t + 2)(4t - 2)/2(4t + 2)
therefore the quotient is (4t - 2)/2
the expression comes out to be (2t - 1)