Answer: Brownion motion is the erratic random movement of microscopic particles in a fluid, as a result of continuous bombardment from molecules of the surrounding medium.
Explanation:
Brownian motion is the random movement of particles in a fluid due to their collisions with other atoms or molecules.
Answer:

Explanation:
Given that,
Radius of a spherical shell, r = 0.7 m
Torque acting on the shell, 
Angular acceleration of the shell, 
We need to find the rotational inertia of the shell about the axis of rotation. The relation between the torque and the angular acceleration is given by :

I is the rotational inertia of the shell

So, the rotational inertia of the shell is
.
Explanation: Ganymede, Callisto, Titan are the moons of outer planets or gaseous planets which are made up of ice and rock. Callisto is an ice-covered moon and has no inner or outer activity and is considered basically geologically dead. Ganymede has rocky core and shows signs of tectonic activity, including long cracks in the crust and regions of young surface terrain. Titan has active geology of liquid hydrocarbons on the surface, rain back onto the surface and evaporation into the atmosphere. It has similar size, composition and mass to Ganymede and Callisto.
Answer:
0.4778 m/s
Explanation:
To solve this question, we will make use of law of conservation of momentum.
We are given that the rock's velocity is 12 m/s at 35°. Thus, the horizontal component of this velocity is;
V_x = (12 m/s)(cos(35°)) = 9.83 m/s.
Thus, the horizontal component of the rock's momentum is;
(3.5 kg)(9.83 m/s) = 34.405 kg·m/s.
Since the person is not pushed up off the ice or down into it, his momentum will have no vertical component and so his momentum will have the same magnitude as the horizontal component of the rock's momentum.
Thus, to get the person's speed, we know that; momentum = mass x velocity
Mass of person = 72 kg and we have momentum as 34.405 kg·m/s
Thus;
34.405 = 72 x velocity
Velocity = 34.405/72
Velocity = 0.4778 m/s
<u>Answer:</u>
2N/cm
<u>Step-by-step explanation:</u>
According to the Hooke's Law, the force required to extend or compress a spring is directly proportional distance you can stretch it, which is represented as:

where,
is the force which is stretching or compressing the spring,
is the spring constant; and
is the distance the spring is stretched.
Substituting the given values to find the elastic constant
to get:




Therefore, the elastic constant is 2 Newton/cm.