Answer:
No, it is not conserved
Explanation:
Let's calculate the total kinetic energy before the collision and compare it with the total kinetic energy after the collision.
The total kinetic energy before the collision is:

where m1 = m2 = 1 kg are the masses of the two carts, v1=2 m/s is the speed of the first cart, and where v2=0 is the speed of the second cart, which is zero because it is stationary.
After the collision, the two carts stick together with same speed v=1 m/s; their total kinetic energy is

So, we see that the kinetic energy was not conserved, because the initial kinetic energy was 2 J while the final kinetic energy is 1 J. This means that this is an inelastic collision, in which only the total momentum is conserved. This loss of kinetic energy does not violate the law of conservation of energy: in fact, the energy lost has simply been converted into another form of energy, such as heat, during the collision.
Answer:
D
Explanation: It makes the most sense. Plz mark brainliest
Answer:
59.18 kg
Explanation:
use f=ma
f= 580 N
a = 9.8 m/s 2
weigh(m) doesn't change only force(F) changes
Answer:
D is the answer
Explanation:
6.45×7.44= 47.98800
Which if we round of we get 48m
The vertical components of velocity is 10.35 m/s and the horizontal component of velocity is 38.6 m/s
<h3>What are the components of velocity?</h3>
We know that velocity is a vector quantity, a vector often can be resolved into its components. The vertical components is V sinθ while the horizontal component is vcosθ.
Hence;
Vertical component = 40 m/s sin 15 degrees = 10.35 m/s
Horizontal component = 40 cos 15 degrees = 38.6 m/s
Learn more about components of velocity:brainly.com/question/14478315
#SPJ1