The correct answer is Shale
Answer:
1. Molecular equation
BaCl2(aq) + 2AgNO3(aq) –> 2AgCl(s) + Ba(NO3)2 (aq)
2. Complete Ionic equation
Ba²⁺(aq) + 2Cl¯(aq) + 2Ag⁺(aq) + 2NO3¯ (aq) —> 2AgCl(s) + Ba²⁺(aq) + 2NO3¯(aq)
3. Net ionic equation
Cl¯(aq) + Ag⁺(aq) —> AgCl(s)
Explanation:
Answer:
im guessing it's the second one
Answer:
Mass = 2.89 g
Explanation:
Given data:
Mass of NH₄Cl = 8.939 g
Mass of Ca(OH)₂ = 7.48 g
Mass of ammonia produced = ?
Solution:
2NH₄Cl + Ca(OH)₂ → CaCl₂ + 2NH₃ + 2H₂O
Number of moles of NH₄Cl:
Number of moles = mass/molar mass
Number of moles = 8.939 g / 53.5 g/mol
Number of moles = 0.17 mol
Number of moles of Ca(OH)₂ :
Number of moles = mass/molar mass
Number of moles = 7.48 g / 74.1 g/mol
Number of moles = 0.10 mol
Now we will compare the moles of ammonia with both reactant.
NH₄Cl : NH₃
2 : 2
0.17 : 0.17
Ca(OH)₂ : NH₃
1 : 2
0.10 : 2/1×0.10 = 0.2 mol
Less number of moles of ammonia are produced by ammonium chloride it will act as limiting reactant.
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 0.17 mol × 17 g/mol
Mass = 2.89 g
I remember coming across this question and the options were:
KOH, HCN, NH₃, HI, Sr(OH)₂
Now, a substance with a low pH is one that dissociates completely in water to release hydrogen ions, while basic substances dissociate completely to release hydroxide ions. Therefore, in the order of increasing pH:
HI, HCN, NH₃, Sr(OH)₂, KOH