Answer:
Weight of solution produced = 5135 kg
Amount of water removed = 4865 kg
Explanation:
For the balance of mass, the incoming mass of sugar must be equal to the outgoing mass. So, the incoming mass (mi) is 38% of 10000 kg
mi = 0.38x10000 = 3800 kg
The outgoing mass (mo) must be 3800 kg, and it is 74% of the total mass (mt)
mo = 0.74xmt
0.74xmt = 3800
mt = 3800/0.74
mt = 5135 kg
This is the mass of solution produced.
The amount of water removed (wr) is the amount of water incoming (wi) less the amount of water outgoing (wo). Both will be the total mass less the mass of sugar :
wi = 10000 - 3800 = 6200 kg
wo = 5135 - 3800 = 1335 kg
wr = wi - wo
wr = 6200 - 1335
wr = 4865 kg
The reactants are found on the Left of the arrow :)
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, in terms of pressures, the rate becomes:

Thus, the rate of change for the partial pressure of ammonia turns out:
![r_{NH_3}=2*(-r_{N_2H_4})\\r_{NH_3}=2*[-(-70torr/h)]\\r_{NH_3}=140torr/h](https://tex.z-dn.net/?f=r_%7BNH_3%7D%3D2%2A%28-r_%7BN_2H_4%7D%29%5C%5Cr_%7BNH_3%7D%3D2%2A%5B-%28-70torr%2Fh%29%5D%5C%5Cr_%7BNH_3%7D%3D140torr%2Fh)
The rate of decrease of partial pressure of urea is taken negative as it is a reactant whereas ammonia a product which has 2 as its stoichiometric coefficient.
Best regards.
An endothermic reaction needs energy to proceed, such energy is usually taken from the environment surrounding the reaction. In the typical case this energy is expressed as heat. Heat is an state of atomic activity, that energy is transferred to an ENDOthermic reaction so the initial threshold of reaction is overcome and the final reaction can occur.
Answer:Vrms is 149.7266 m/sec
Explanation:The root means square velocity of a gas can be calculated as follows:
Vrms =

where:
R is the ideal gas constant = 8.3145
T is absolute temperature = -55 + 273 = 118 degrees kelvin
M is the molar mass of the gas = 131.293 grams = 0.131293 kg
Substituting with these givens in the above equation, we would find that the Vrms is 149.7266 m/sec
Hope this helps :)