Electrons and protons because they are essentially always the same
Answer:
Reagents: 1)
2)
, 
Mechanism: Hydroboration
Explanation:
In this case, we have a <u>hydration of alkene</u>s reaction. But, in this example, we have an <u>anti-Markovnikov reaction</u>. In other words, the "OH" is added in the least substituted carbon. Therefore we have to choose an anti-Markovnikov reaction: <u>"hydroboration"</u>.
The <u>first step</u> of this reaction is the addition of borane (
) to the double bond. Then in the <u>second step</u>, we have the deprotonation of the hydrogen peroxide, to obtain the peroxide anion. In the <u>third step</u>, the peroxide anion attacks the molecule produced in the first step to produce a complex compound in which we have a bond "
". In <u>step number 4</u> we have the migration of the C-B bond to oxygen. Then in <u>step number 5</u>, we have the attack of
on the
to produce an alkoxide. Finally, the water molecule produce in step 2 will <u>protonate</u> the molecule to produce the alcohol.
See figure 1
I hope it helps!
Answer:
A positively charged subatomic particle
Answer:
10.8 ml
Explanation:
The BOD is an empirical test to determine the molecular oxygen used during a specified incubation period (usually five days), for the biochemical degradation of organic matter (carbonaceous demand) and the oxygen used to oxidise inorganic matter.
See attached file
Answer:
Substitution.
Explanation:
Claisen reaction was first published in 1887 by a prominent German chemist known as Rainer Ludwig Claisen.
A Claisen reaction is a nucleophilic substitution in which an enolate is the nucleophile. It's typically a reaction of two molecules of an ester to form a β-keto ester, in the presence of an alkoxide base. Thus, a Claisen reaction is simply a characteristic condensation reaction of esters through a nucleophilic carbonyl substitution with an enolate such as a ketone enolate or an ester enolate.
Furthermore, a Claisen reaction results in the formation of a carbon-carbon bond in the presence of a strong base to yield a β-keto ester.