The duration of time for which an object stays in air is called the hang time.
For an athlete who moves 3m horizontally during a 1.25m high jump, the hang time will be the sum of the time taken by the athlete to reach the maximum height and the time taken for the athlete to reach the ground from maximum height.
Calculate the time taken t_1 by the athlete to reach the maximum height



The athlete takes same time to reach the ground from the maximum height, so 
Calculate the hang time will be



Therefore the hang time of the athlete when he moves a horizontal distance of 3m is 1s.
Similarly, when the athlete runs 6m horizontally, then also there will not be a change in the hang time of the athlete as the hang time is independent of the horizontal distance covered.
Answer :
The answer is clearly C
Explanation:
Because the only way currents move are to the side
Answer:
An atom always has the same number of electrons as protons. Electrons have an electric charge of -1 and protons have an electric charge of +1. Therefore, the charges of an atom's electrons and protons “cancel out.” This explains why atoms are neutral in electric charge.
Explanation:
Answer: B
Explanation: the wave with the largest amplitude would create ththe loudest sound, and based on the picture provided, I would guess B has the largest amplitude.
Answer:
Consider the velocity-time graph attached below.
The velocity-time graph represents the acceleration of a body under a force.
We can see that is the graph that if a child release the ball above the ground at A, it hits the ground at B. Bounces back with a reaches the top again at C, and hits the ground again at D.
The slope of velocity time graph represents acceleration. From A to B, velocity in increasing constantly with respect to time, which means constant acceleration from A to B. AS velocity increase, momentum of the ball also increases, which results in the increase of Kinetic energy.
At B, the ball hits the ground, the velocity decreases, momentum decrease s, because kinetic energy is transferred from the ball to the ground, due to which the ball would not attain the same height after the bounce.
Then the velocity remains negative at C, which means that now the ball is moving in opposite direction till C. It reaches its new at height at C, which is not the same as that of A because of lost in Kinetic Energy, and fall again.