Answer
The dedicated graphics card is used when performing hardware-intensive tasks so as to ensure efficiency and balanced performance. However, it uses more power and thus produces more heat. When the cooling system is not sufficient or the room is not well ventilated, your PC begins to overheat while playing games. Explanation: How does the second law of thermodynamics relate to the direction of heat flow? Heat of itself never flows from a cold object to a hot object. ... The second law expresses the maximum efficiency of a heat engine in terms of hot and cold temperatures. one of these answers i am not sure
What part of the bacterial cell helps it stick to surfaces
It's the second graph!
it's the only one with a negative gradient.
so the temperature of the ball will fall in water as it looses its heat.
activate windows,:-P
Answer:
2.464 cm above the water surface
Explanation:
Recall that for the cube to float, means that the volume of water displaced weights the same as the weight of the block.
We calculate the weight of the block multiplying its density (0.78 gr/cm^3) times its volume (11.2^3 cm^3):
weight of the block = 0.78 * 11.2^3 gr
Now the displaced water will have a volume equal to the base of the cube (11.2 cm^2) times the part of the cube (x) that is under water. Recall as well that the density of water is 1 gr/cm^3.
So the weight of the volume of water displaced is:
weight of water = 1 * 11.2^2 * x
we make both weight expressions equal each other for the floating requirement:
0.78 * 11.2^3 = 11.2^2 * x
then x = 0.78 * 11.2 cm = 8.736 cm
This "x" is the portion of the cube under water. Then to estimate what is left of the cube above water, we subtract it from the cube's height (11.2 cm) as follows:
11.2 cm - 8.736 cm = 2.464 cm
Answer:
Explanation:Capillary action is the ability of a liquid to flow in narrow spaces without the assistance of, ... This article is about the physical phenomenon. ... If the diameter of the tube is sufficiently small, then the combination of surface tension (which is caused by cohesion ... They derived the Young–Laplace equation of capillary action.