Answer:
2.893 x 10⁻³ mol NaOH
[HCOOH] = 0.5786 mol/L
Explanation:
The balanced reaction equation is:
HCOOH + NaOH ⇒ NaHCOO + H₂O
At the endpoint in the titration, the amount of base added is just enough to react with all the formic acid present. So first we will calculate the moles of base added and use the molar ratio from the reaction equation to find the moles of formic acid that must have been present. Then we can find the concentration of formic acid.
The moles of base added is calculated as follows:
n = CV = (0.1088 mol/L)(26.59 mL) = 2.892992 mmol NaOH
Extra significant figures are kept to avoid round-off errors.
Now we relate the amount of NaOH to the amount of HCOOH through the molar ratio of 1:1.
(2.892992 mmol NaOH)(1 HCOOH/1 NaOH) = 2.892992 mmol HCOOH
The concentration of HCOOH to the correct number of significant figures is then calculated as follows:
C = n/V = (2.892992 mmol) / (5.00 mL) = 0.5786 mol/L
The question also asks to calculate the moles of base, so we convert millimoles to moles:
(2.892992 mmol NaOH)(1 mol/1000 mmol) = 2.893 x 10⁻³ mol NaOH
The substances that are added in the funnel are bromoethane or CH3CH2Br, water and hexane. The density of the bromoethane is given as 1.460 g/mL, density of water would 1 g/mL and hexane would have a density of 0.660 g/mL. Assuming that these substances are immiscible in each other, adding them in a funnel would form three layers. The substance with the highest density would be in the lowest layer which is bromoethane. In the middle layer, water could be found. Lastly, hexane would be found on the uppermost layer since it is the substance that has the lowest density of the three.
Randomness. It is simply the measure of disorder.
Answer:
Cl2, because it gained electrons
Explanation:
2Fe^2+ went from 2+ to 3+
Cl2 went from 0 to -1
Reduction-gain
Oxidation-loss
- means gained and + means loss trust me it doesn't make sense but if you stick to it it'll be a lot easier for you.
Answer:
H2-1
H2+-1/2
H22- zero
Explanation:
Bond order= Bonding electrons-antibonding electrons/2
In H2, there are two bonding electrons and no antibonding electrons. In H2+ there is only one bonding electron and no antibonding electron while in H22- there are two bonding and two antibonding electrons respectively.