Answer:
110.984 ?
i apologize if i'm wrong, you can report it if im wrong
have a good day/ night
Explanation:
Q=mc(deltaT)
Q is the amount of energy which you are looking for
M is the mass which you can find
C is the specific heat of water which is 4.18 J/gC
DeltaT is the change in temperature which you can find.
To find the mass, first you must know that the density of water is 1g/mL, meaning that 200 mL has a mass of 200 g. This means that to find the total mass (m in the equation) all you need to do is add the mass of water and NaOH.
200 g + 2.535 g=202.535 g.
To find deltaT you would need to take the final temperature minus the initial temperature.
27.8C-24.2C=3.6C
Then these values can be substituted into the equation:
q=(202.635g)(4.18J/gC)(3.6C)
Q=3049.25 J
Technically this should be rounded off to 1 significant figure (200 mL only had 1), but ignoring signficiant figure rules this should be correct. Also, sometimes other units like calories or kJ may be asked for, meaning that a conversion or alternate c value would be used.
These ions are disjoint by the charge on the ion into four dissimilar tables and listed alphabetically within each table. Each polyatomic ion, has it called, chemical, formula, two dimensional drawing, and three dimensional representation are given.
The three dimensional buildings are drawn as CPK models. CPK structures represent the atoms as sphere, where the radius of the sphere is equal to the van der waals radius of the atom; these buildings give a measure up the volume of the polyatomic atom.
Answer:
The molar mass in g/mol is 121.4 g/m
Explanation:
Let's apply the Ideal Gases Law to solve this:
P . V = n . R. T
V = 125 mL → 0.125L
P = 754 Torr
760 Torr ___ 1 atm
754 Torr ____ (754 / 760) = 0.992 atm
Moles = Mass / Molar mass
0.992 atm . 0.125L = (0.495 g / MM) . 0.082 . 371K
(0.992 atm . 0.125L) / (0.082 . 371K) = (0.495 g / MM)
4.07x10⁻³ mol = 0.495 g / MM
MM = 0.495 g / 4.07x10⁻³ mol → 121.4 g/m