Cellular Respiration is the process of the release of energy from food. Hence, option B is correct.
<h3>What is cellular respiration?</h3>
Cellular respiration is the process by which organisms use oxygen to break down food molecules to get chemical energy for cell functions.
Through the process of cellular respiration, the energy in food is converted into energy that can be used by the body's cells. During cellular respiration, glucose and oxygen are converted into carbon dioxide and water, and the energy is transferred to ATP.
Hence, option B is correct.
Learn more about cellular respiration here:
brainly.com/question/13721588
#SPJ1
Answer: Sodium bromide is an ionically bonded compound.
(NaBr: Sodium Bromide)
When we have:
Zn(OH)2 → Zn2+ 2OH- with Ksp = 3 x 10 ^-16
and:
Zn2+ + 4OH- → Zn(OH)4 2- with Kf = 2 x 10^15
by mixing those equations together:
Zn(OH)2 + 2OH- → Zn(OH)4 2- with K = Kf *Ksp = 3 x 10^-16 * 2x10^15 =0.6
by using ICE table:
Zn(OH)2 + 2OH- → Zn(OH)4 2-
initial 2m 0
change -2X +X
Equ 2-2X X
when we assume that the solubility is X
and when K = [Zn(OH)4 2-] / [OH-]^2
0.6 = X / (2-2X)^2 by solving this equation for X
∴ X = 0.53 m
∴ the solubility of Zn(OH)2 = 0.53 M
They have the most moons because they have the most mass
<h2>Steps:</h2>
- Remember that Density = mass/volume, or D = m/v
So firstly, we have to find the volume of the rock. To do this, we need to subtract the volume of water A from the volume of the water B. In this case:
- Water A = 30 mL
- Water B = 40 mL
- 40 mL - 30 mL = 10 mL
<u>The volume of the rock is 10 mL.</u>
Now that we have the volume, we can plug that and the density of the rock into the density equation to solve for the mass.

For this, multiply both sides by 10:

<h2>Answer:</h2>
<u>Rounding to the tenths place, the mass of the rock is 36.8 g, or C.</u>